August  2014, 34(8): 3287-3315. doi: 10.3934/dcds.2014.34.3287

Steady stratified periodic gravity waves with surface tension II: Global bifurcation

1. 

University of Missouri, Columbia, MO 65201

Received  July 2013 Revised  September 2013 Published  January 2014

In this paper we consider two-dimensional, stratified, steady water waves propagating over an impermeable flat bed and with a free surface. The motion is assumed to be driven by capillarity (that is, surface tension) on the surface and a gravitational force acting on the body of the fluid. We prove the existence of global continua of classical solutions that are periodic and traveling. This is accomplished by globally continuing the curves of small-amplitude solutions obtained by the author in [25]. We do this in two ways: first, by means of a degree theoretic theorem in the spirit of Rabinowitz, and second via the analytic continuation method of Dancer.
Citation: Samuel Walsh. Steady stratified periodic gravity waves with surface tension II: Global bifurcation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3287-3315. doi: 10.3934/dcds.2014.34.3287
References:
[1]

S. Agmon, On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems,, Comm. Pure and Appl. Math., 15 (1962), 119. doi: 10.1002/cpa.3160150203.

[2]

B. Buffoni, E. Dancer and J. Toland, Sur les ondes de Stokes et une conjecture de levi-civita,, C. R. Acad. Sci. Paris Sér. I Math., 326 (1998), 1265. doi: 10.1016/S0764-4442(98)80176-6.

[3]

B. Buffoni, E. Dancer and J. Toland, The regularity and local bifurcation of Stokes waves,, Arch. Rational Mech. Anal., 152 (2000), 207. doi: 10.1007/s002050000086.

[4]

B. Buffoni, E. Dancer and J. Toland, The sub-harmonic bifurcation of Stokes waves,, Arch. Rational Mech. Anal., 152 (2000), 241. doi: 10.1007/s002050000087.

[5]

B. Buffoni and J. Toland, Analytic Theory of Global Bifurcation: An Introduction,, Princeton University Press, (2003).

[6]

A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity,, Comm. Pure Appl. Math., 57 (2004), 481. doi: 10.1002/cpa.3046.

[7]

A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis,, vol. 81 of CBMS-NSF Regional Conference Series in Applied Mathematics, (2011). doi: 10.1137/1.9781611971873.

[8]

E. Dancer, Bifurcation theory for analytic operators,, Proc. London Math. Soc., 26 (1973), 359.

[9]

E. Dancer, Global solution branches for positive mappings,, Arch. Rational Mech. Anal., 52 (1973), 181.

[10]

E. Dancer, Global structure of the solutions of nonlinear real analytic eigenvalue problems,, Proc. London Math. Soc, 27 (1973), 747.

[11]

J. Escher, A.-V. Matioc and B.-V. Matioc, On stratified steady periodic water waves with linear density distribution and stagnation points,, J. Differential Equations, 251 (2011), 2932. doi: 10.1016/j.jde.2011.03.023.

[12]

T. Healey and H. Simpson, Global continuation in nonlinear elasticity,, Arch. Rational Mech. Anal., 143 (1998), 1. doi: 10.1007/s002050050098.

[13]

D. Henry and A.-V. Matioc, Global bifurcation of capillary-gravity stratified water waves,, Proc. Roy. Soc. Edinburgh Sect. A, ().

[14]

D. Henry and B.-V. Matioc, On the existence of steady periodic capillary-gravity stratified water waves,, Ann. Sc. Norm. Super. Pisa Cl. Sci., ().

[15]

H. Kielhöfer, Multiple eigenvalue bifurcation for Fredholm operators,, J. Reine Angew. Math., 358 (1985), 104. doi: 10.1515/crll.1985.358.104.

[16]

H. Kielhöfer, Bifurcation Theory,, 156 of Applied Mathematical Sciences, (2004).

[17]

Y. Luo and N. Trudinger, Linear second order elliptic equations with Venttsel boundary conditions,, in Proc. R. Soc. Edinb., 118 (1991), 193. doi: 10.1017/S0308210500029048.

[18]

Y. Luo and N. Trudinger, Quasilinear second order elliptic equations with Venttsel boundary conditions,, Potential Anal., 3 (1994), 219. doi: 10.1007/BF01053434.

[19]

P. Rabinowitz, Some global results for nonlinear eigenvalue problems,, J. Funct. Anal, 7 (1971), 487. doi: 10.1016/0022-1236(71)90030-9.

[20]

E. Wahlén, Steady periodic capillary-gravity waves with vorticity,, SIAM J. Math. Anal., 38 (2006), 921. doi: 10.1137/050630465.

[21]

E. Wahlén, Steady periodic capillary waves with vorticity,, Ark. Mat., 44 (2006), 367. doi: 10.1007/s11512-006-0024-7.

[22]

E. Wahlén, On rotational water waves with surface tension,, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 365 (2007), 2215. doi: 10.1098/rsta.2007.2003.

[23]

E. Wahlén, On some Nonlinear Aspects of Wave Motion,, PhD thesis, (2008).

[24]

S. Walsh, Stratified and steady periodic water waves,, SIAM J. Math. Anal., 41 (2009), 1054. doi: 10.1137/080721583.

[25]

S. Walsh, Steady stratified periodic gravity waves with surface tension i: Local bifurcation,, Preprint., ().

[26]

C.-S. Yih, Dynamics of Nonhomogeneous Fluids,, The Macmillan Co., (1965).

show all references

References:
[1]

S. Agmon, On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems,, Comm. Pure and Appl. Math., 15 (1962), 119. doi: 10.1002/cpa.3160150203.

[2]

B. Buffoni, E. Dancer and J. Toland, Sur les ondes de Stokes et une conjecture de levi-civita,, C. R. Acad. Sci. Paris Sér. I Math., 326 (1998), 1265. doi: 10.1016/S0764-4442(98)80176-6.

[3]

B. Buffoni, E. Dancer and J. Toland, The regularity and local bifurcation of Stokes waves,, Arch. Rational Mech. Anal., 152 (2000), 207. doi: 10.1007/s002050000086.

[4]

B. Buffoni, E. Dancer and J. Toland, The sub-harmonic bifurcation of Stokes waves,, Arch. Rational Mech. Anal., 152 (2000), 241. doi: 10.1007/s002050000087.

[5]

B. Buffoni and J. Toland, Analytic Theory of Global Bifurcation: An Introduction,, Princeton University Press, (2003).

[6]

A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity,, Comm. Pure Appl. Math., 57 (2004), 481. doi: 10.1002/cpa.3046.

[7]

A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis,, vol. 81 of CBMS-NSF Regional Conference Series in Applied Mathematics, (2011). doi: 10.1137/1.9781611971873.

[8]

E. Dancer, Bifurcation theory for analytic operators,, Proc. London Math. Soc., 26 (1973), 359.

[9]

E. Dancer, Global solution branches for positive mappings,, Arch. Rational Mech. Anal., 52 (1973), 181.

[10]

E. Dancer, Global structure of the solutions of nonlinear real analytic eigenvalue problems,, Proc. London Math. Soc, 27 (1973), 747.

[11]

J. Escher, A.-V. Matioc and B.-V. Matioc, On stratified steady periodic water waves with linear density distribution and stagnation points,, J. Differential Equations, 251 (2011), 2932. doi: 10.1016/j.jde.2011.03.023.

[12]

T. Healey and H. Simpson, Global continuation in nonlinear elasticity,, Arch. Rational Mech. Anal., 143 (1998), 1. doi: 10.1007/s002050050098.

[13]

D. Henry and A.-V. Matioc, Global bifurcation of capillary-gravity stratified water waves,, Proc. Roy. Soc. Edinburgh Sect. A, ().

[14]

D. Henry and B.-V. Matioc, On the existence of steady periodic capillary-gravity stratified water waves,, Ann. Sc. Norm. Super. Pisa Cl. Sci., ().

[15]

H. Kielhöfer, Multiple eigenvalue bifurcation for Fredholm operators,, J. Reine Angew. Math., 358 (1985), 104. doi: 10.1515/crll.1985.358.104.

[16]

H. Kielhöfer, Bifurcation Theory,, 156 of Applied Mathematical Sciences, (2004).

[17]

Y. Luo and N. Trudinger, Linear second order elliptic equations with Venttsel boundary conditions,, in Proc. R. Soc. Edinb., 118 (1991), 193. doi: 10.1017/S0308210500029048.

[18]

Y. Luo and N. Trudinger, Quasilinear second order elliptic equations with Venttsel boundary conditions,, Potential Anal., 3 (1994), 219. doi: 10.1007/BF01053434.

[19]

P. Rabinowitz, Some global results for nonlinear eigenvalue problems,, J. Funct. Anal, 7 (1971), 487. doi: 10.1016/0022-1236(71)90030-9.

[20]

E. Wahlén, Steady periodic capillary-gravity waves with vorticity,, SIAM J. Math. Anal., 38 (2006), 921. doi: 10.1137/050630465.

[21]

E. Wahlén, Steady periodic capillary waves with vorticity,, Ark. Mat., 44 (2006), 367. doi: 10.1007/s11512-006-0024-7.

[22]

E. Wahlén, On rotational water waves with surface tension,, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 365 (2007), 2215. doi: 10.1098/rsta.2007.2003.

[23]

E. Wahlén, On some Nonlinear Aspects of Wave Motion,, PhD thesis, (2008).

[24]

S. Walsh, Stratified and steady periodic water waves,, SIAM J. Math. Anal., 41 (2009), 1054. doi: 10.1137/080721583.

[25]

S. Walsh, Steady stratified periodic gravity waves with surface tension i: Local bifurcation,, Preprint., ().

[26]

C.-S. Yih, Dynamics of Nonhomogeneous Fluids,, The Macmillan Co., (1965).

[1]

Calin Iulian Martin. Dispersion relations for periodic water waves with surface tension and discontinuous vorticity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3109-3123. doi: 10.3934/dcds.2014.34.3109

[2]

Samuel Walsh. Steady stratified periodic gravity waves with surface tension I: Local bifurcation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3241-3285. doi: 10.3934/dcds.2014.34.3241

[3]

Vera Mikyoung Hur. On the formation of singularities for surface water waves. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1465-1474. doi: 10.3934/cpaa.2012.11.1465

[4]

Chengchun Hao. Cauchy problem for viscous shallow water equations with surface tension. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 593-608. doi: 10.3934/dcdsb.2010.13.593

[5]

Shengfu Deng. Generalized pitchfork bifurcation on a two-dimensional gaseous star with self-gravity and surface tension. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3419-3435. doi: 10.3934/dcds.2014.34.3419

[6]

Shu-Ming Sun. Existence theory of capillary-gravity waves on water of finite depth. Mathematical Control & Related Fields, 2014, 4 (3) : 315-363. doi: 10.3934/mcrf.2014.4.315

[7]

Min Chen, Nghiem V. Nguyen, Shu-Ming Sun. Solitary-wave solutions to Boussinesq systems with large surface tension. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1153-1184. doi: 10.3934/dcds.2010.26.1153

[8]

Hyung Ju Hwang, Youngmin Oh, Marco Antonio Fontelos. The vanishing surface tension limit for the Hele-Shaw problem. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3479-3514. doi: 10.3934/dcdsb.2016108

[9]

Colette Calmelet, Diane Sepich. Surface tension and modeling of cellular intercalation during zebrafish gastrulation. Mathematical Biosciences & Engineering, 2010, 7 (2) : 259-275. doi: 10.3934/mbe.2010.7.259

[10]

Roman M. Taranets, Jeffrey T. Wong. Existence of weak solutions for particle-laden flow with surface tension. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4979-4996. doi: 10.3934/dcds.2018217

[11]

Nataliya Vasylyeva, Vitalii Overko. The Hele-Shaw problem with surface tension in the case of subdiffusion. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1941-1974. doi: 10.3934/cpaa.2016023

[12]

Elena Kartashova. Nonlinear resonances of water waves. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 607-621. doi: 10.3934/dcdsb.2009.12.607

[13]

Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103

[14]

Octavian G. Mustafa. On isolated vorticity regions beneath the water surface. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1523-1535. doi: 10.3934/cpaa.2012.11.1523

[15]

Walter A. Strauss. Vorticity jumps in steady water waves. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1101-1112. doi: 10.3934/dcdsb.2012.17.1101

[16]

Jerry L. Bona, Henrik Kalisch. Models for internal waves in deep water. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 1-20. doi: 10.3934/dcds.2000.6.1

[17]

Martina Chirilus-Bruckner, Guido Schneider. Interaction of oscillatory packets of water waves. Conference Publications, 2015, 2015 (special) : 267-275. doi: 10.3934/proc.2015.0267

[18]

Jie Wang, Xiaoqiang Wang. New asymptotic analysis method for phase field models in moving boundary problem with surface tension. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3185-3213. doi: 10.3934/dcdsb.2015.20.3185

[19]

Grigor Nika, Bogdan Vernescu. Rate of convergence for a multi-scale model of dilute emulsions with non-uniform surface tension. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1553-1564. doi: 10.3934/dcdss.2016062

[20]

Marcelo M. Disconzi, Igor Kukavica. A priori estimates for the 3D compressible free-boundary Euler equations with surface tension in the case of a liquid. Evolution Equations & Control Theory, 2019, 8 (3) : 503-542. doi: 10.3934/eect.2019025

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]