July  2014, 34(7): 2983-3011. doi: 10.3934/dcds.2014.34.2983

The Aubry-Mather theorem for driven generalized elastic chains

1. 

Department of Mathematics, Bijenička 30, Zagreb

Received  May 2013 Revised  October 2013 Published  December 2013

We consider uniformly (DC) or periodically (AC) driven generalized infinite elastic chains (a generalized Frenkel-Kontorova model) with gradient dynamics. We first show that the union of supports of all space-time invariant measures, denoted by $\mathcal{A}$, projects injectively to a dynamical system on a 2-dimensional cylinder. We also prove existence of space-time ergodic measures supported on a set of rotationaly ordered configurations with an arbitrary (rational or irrational) rotation number. This shows that the Aubry-Mather structure of ground states persists if an arbitrary AC or DC force is applied. The set $\mathcal{A}$ attracts almost surely (in probability) configurations with bounded spacing. In the DC case, $\mathcal{A}$ consists entirely of equilibria and uniformly sliding solutions. The key tool is a new weak Lyapunov function on the space of translationally invariant probability measures on the state space, which counts intersections.
Citation: Siniša Slijepčević. The Aubry-Mather theorem for driven generalized elastic chains. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2983-3011. doi: 10.3934/dcds.2014.34.2983
References:
[1]

S. Angenent and B. Fiedler, The dynamics of rotating waves in scalar reaction diffusion equations,, Trans. Am. Math. Soc., 307 (1988), 545. doi: 10.1090/S0002-9947-1988-0940217-X. Google Scholar

[2]

S. Angenent, The zeroset of a solution of a parabolic equation,, J. Reine Engew. Math., 390 (1988), 79. doi: 10.1515/crll.1988.390.79. Google Scholar

[3]

C. Baesens and R. S. Mackay, Gradient dynamics of tilted Frenkel-Kontorova models,, Nonlinearity, 11 (1998), 949. doi: 10.1088/0951-7715/11/4/011. Google Scholar

[4]

C. Baesens, Spatially extended systems with monotone dynamics (continuous time),, in Dynamics of coupled Map Lattices and of Related Spatially Extended Systems, (2005), 241. doi: 10.1007/11360810_10. Google Scholar

[5]

V. Bangert, Mather sets for twist geodesics on tori,, in Dynamics Reported, (1988), 1. Google Scholar

[6]

J.-P. Eckmann and J. Rougemont, Coarsening by Ginzburg-Landau dynamics,, Comm. Math. Phys., 199 (1998), 441. doi: 10.1007/s002200050508. Google Scholar

[7]

B. Fiedler and J. Mallet-Paret, A Poincaré-Bendixson theorem for scalar reaction diffusion equations,, Arch. Rational Mech. Anal., 107 (1989), 325. doi: 10.1007/BF00251553. Google Scholar

[8]

J. J. Mazo, F. Falo and L. M. Floría, Stability of metastable structures in dissipative ac dynamics of the Frenkel-Kontorova model,, Phys. Rev. B, 52 (1995), 6451. doi: 10.1103/PhysRevB.52.6451. Google Scholar

[9]

L. M. Floría and J. J. Mazo, Dissipative dynamics of the Frenkel-Kontorova model,, Advances in Physics, 45 (1996), 505. doi: 10.1080/00018739600101557. Google Scholar

[10]

L. M. Floría, C. Baesens and J. Gómez-Gardeñez, The Frenkel-Kontorova model,, in Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems, (2005), 209. doi: 10.1007/11360810_9. Google Scholar

[11]

T. Gallay and A. Scheel, Diffusive stability of oscillations in reaction-diffusion systems,, Trans. Am. Math. Soc., 363 (2011), 2571. doi: 10.1090/S0002-9947-2010-05148-7. Google Scholar

[12]

T. Gallay and S. Slijepčević, Energy flow in formally gradient partial differential equations on unbounded domains,, J. Dynam. Differential Equations, 13 (2001), 757. doi: 10.1023/A:1016624010828. Google Scholar

[13]

T. Gallay and S. Slijepčević, Distribution of energy and convergence to equilibria in extended dissipative systems,, preprint, (). Google Scholar

[14]

R. W. Ghrist and R. C. Vandervost, Scalar parabolic PDEs and braids,, Trans. Am. Math. Soc., 361 (2009), 2755. doi: 10.1090/S0002-9947-08-04823-X. Google Scholar

[15]

B. Hu, W.-X. Qin and Z. Zheng, Rotation number of the overdamped Frenkel-Kontorova model with ac-driving,, Physica D, 208 (2005), 172. doi: 10.1016/j.physd.2005.06.022. Google Scholar

[16]

R. Joly and G. Raugel, Generic Morse-Smale property for the parabolic equation on the circle,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 1397. doi: 10.1016/j.anihpc.2010.09.001. Google Scholar

[17]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Encyclopedia of Mathematics and its Applications, (1995). Google Scholar

[18]

S. G. Krantz and R. Parks, A Primer of Real Analytic Functions,, Second edition, (2002). doi: 10.1007/978-0-8176-8134-0. Google Scholar

[19]

R. de la Llave and E. Valdinoci, A generalization of Aubry-Mather theory to partial differential equations and pseudo-differential equations,, Ann. I. H. Poincaré Anal. Non Linéaire, 26 (2009), 1309. doi: 10.1016/j.anihpc.2008.11.002. Google Scholar

[20]

J. Mather, Minimal measures,, Comm. Math. Helv., 64 (1989), 375. doi: 10.1007/BF02564683. Google Scholar

[21]

A. Mielke and S. Zelik, Multi-pulse evolution and space-time chaos in dissipative systems,, Mem. Am. Math. Soc., 198 (2009). doi: 10.1090/memo/0925. Google Scholar

[22]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, in Handbook of Differential Equations: Evolutionary Equations. Vol. IV, (2008), 103. doi: 10.1016/S1874-5717(08)00003-0. Google Scholar

[23]

W.-X. Qin, Dynamics of the Frenkel-Kontorova model with irrational mean spacing,, Nolinearity, 23 (2010), 1873. doi: 10.1088/0951-7715/23/8/005. Google Scholar

[24]

W.-X. Qin, Existence and modulation of uniform sliding states in driven and overdamped particle chains,, Comm. Math. Physics, 311 (2012), 513. doi: 10.1007/s00220-011-1385-8. Google Scholar

[25]

S. Slijepčević, Extended gradient systems: Dimension one,, Discrete Contin. Dyn. Syst., 6 (2000), 503. doi: 10.3934/dcds.2000.6.503. Google Scholar

[26]

S. Slijepčević, The shear-rotation interval of twist maps,, Ergodic Theory Dyn. Sys., 22 (2002), 303. doi: 10.1017/S0143385702000147. Google Scholar

[27]

S. Slijepčević, The energy flow of discrete extended gradient systems,, Nonlinearity, 26 (2013), 2051. doi: 10.1088/0951-7715/26/7/2051. Google Scholar

[28]

S. Slijepčević, An ergodic Poincaré-Bendixson theorem for scalar reaction diffusion equations,, in preparation., (). Google Scholar

[29]

J. Smillie, Competitive and cooperative tridiagonal systems of differential equations,, SIAM J. Math. Anal., 15 (1984), 530. doi: 10.1137/0515040. Google Scholar

[30]

H. L. Smith, Monotone dynamical systems,, Mathematical Surveys and Monographs, (1996). Google Scholar

[31]

D. Turaev and S. Zelik, Analytical proof of space-time chaos in Ginzburg-Landau equation,, Discrete Contin. Dyn. Sys., 28 (2010), 1713. doi: 10.3934/dcds.2010.28.1713. Google Scholar

[32]

S. Zelik, Formally gradient reaction-diffusion systems in $\mathbbR^n$ have zero spatio-temporal entropy,, Discrete Contin. Dyn. Sys., 2003 (): 960. Google Scholar

show all references

References:
[1]

S. Angenent and B. Fiedler, The dynamics of rotating waves in scalar reaction diffusion equations,, Trans. Am. Math. Soc., 307 (1988), 545. doi: 10.1090/S0002-9947-1988-0940217-X. Google Scholar

[2]

S. Angenent, The zeroset of a solution of a parabolic equation,, J. Reine Engew. Math., 390 (1988), 79. doi: 10.1515/crll.1988.390.79. Google Scholar

[3]

C. Baesens and R. S. Mackay, Gradient dynamics of tilted Frenkel-Kontorova models,, Nonlinearity, 11 (1998), 949. doi: 10.1088/0951-7715/11/4/011. Google Scholar

[4]

C. Baesens, Spatially extended systems with monotone dynamics (continuous time),, in Dynamics of coupled Map Lattices and of Related Spatially Extended Systems, (2005), 241. doi: 10.1007/11360810_10. Google Scholar

[5]

V. Bangert, Mather sets for twist geodesics on tori,, in Dynamics Reported, (1988), 1. Google Scholar

[6]

J.-P. Eckmann and J. Rougemont, Coarsening by Ginzburg-Landau dynamics,, Comm. Math. Phys., 199 (1998), 441. doi: 10.1007/s002200050508. Google Scholar

[7]

B. Fiedler and J. Mallet-Paret, A Poincaré-Bendixson theorem for scalar reaction diffusion equations,, Arch. Rational Mech. Anal., 107 (1989), 325. doi: 10.1007/BF00251553. Google Scholar

[8]

J. J. Mazo, F. Falo and L. M. Floría, Stability of metastable structures in dissipative ac dynamics of the Frenkel-Kontorova model,, Phys. Rev. B, 52 (1995), 6451. doi: 10.1103/PhysRevB.52.6451. Google Scholar

[9]

L. M. Floría and J. J. Mazo, Dissipative dynamics of the Frenkel-Kontorova model,, Advances in Physics, 45 (1996), 505. doi: 10.1080/00018739600101557. Google Scholar

[10]

L. M. Floría, C. Baesens and J. Gómez-Gardeñez, The Frenkel-Kontorova model,, in Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems, (2005), 209. doi: 10.1007/11360810_9. Google Scholar

[11]

T. Gallay and A. Scheel, Diffusive stability of oscillations in reaction-diffusion systems,, Trans. Am. Math. Soc., 363 (2011), 2571. doi: 10.1090/S0002-9947-2010-05148-7. Google Scholar

[12]

T. Gallay and S. Slijepčević, Energy flow in formally gradient partial differential equations on unbounded domains,, J. Dynam. Differential Equations, 13 (2001), 757. doi: 10.1023/A:1016624010828. Google Scholar

[13]

T. Gallay and S. Slijepčević, Distribution of energy and convergence to equilibria in extended dissipative systems,, preprint, (). Google Scholar

[14]

R. W. Ghrist and R. C. Vandervost, Scalar parabolic PDEs and braids,, Trans. Am. Math. Soc., 361 (2009), 2755. doi: 10.1090/S0002-9947-08-04823-X. Google Scholar

[15]

B. Hu, W.-X. Qin and Z. Zheng, Rotation number of the overdamped Frenkel-Kontorova model with ac-driving,, Physica D, 208 (2005), 172. doi: 10.1016/j.physd.2005.06.022. Google Scholar

[16]

R. Joly and G. Raugel, Generic Morse-Smale property for the parabolic equation on the circle,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 1397. doi: 10.1016/j.anihpc.2010.09.001. Google Scholar

[17]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Encyclopedia of Mathematics and its Applications, (1995). Google Scholar

[18]

S. G. Krantz and R. Parks, A Primer of Real Analytic Functions,, Second edition, (2002). doi: 10.1007/978-0-8176-8134-0. Google Scholar

[19]

R. de la Llave and E. Valdinoci, A generalization of Aubry-Mather theory to partial differential equations and pseudo-differential equations,, Ann. I. H. Poincaré Anal. Non Linéaire, 26 (2009), 1309. doi: 10.1016/j.anihpc.2008.11.002. Google Scholar

[20]

J. Mather, Minimal measures,, Comm. Math. Helv., 64 (1989), 375. doi: 10.1007/BF02564683. Google Scholar

[21]

A. Mielke and S. Zelik, Multi-pulse evolution and space-time chaos in dissipative systems,, Mem. Am. Math. Soc., 198 (2009). doi: 10.1090/memo/0925. Google Scholar

[22]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, in Handbook of Differential Equations: Evolutionary Equations. Vol. IV, (2008), 103. doi: 10.1016/S1874-5717(08)00003-0. Google Scholar

[23]

W.-X. Qin, Dynamics of the Frenkel-Kontorova model with irrational mean spacing,, Nolinearity, 23 (2010), 1873. doi: 10.1088/0951-7715/23/8/005. Google Scholar

[24]

W.-X. Qin, Existence and modulation of uniform sliding states in driven and overdamped particle chains,, Comm. Math. Physics, 311 (2012), 513. doi: 10.1007/s00220-011-1385-8. Google Scholar

[25]

S. Slijepčević, Extended gradient systems: Dimension one,, Discrete Contin. Dyn. Syst., 6 (2000), 503. doi: 10.3934/dcds.2000.6.503. Google Scholar

[26]

S. Slijepčević, The shear-rotation interval of twist maps,, Ergodic Theory Dyn. Sys., 22 (2002), 303. doi: 10.1017/S0143385702000147. Google Scholar

[27]

S. Slijepčević, The energy flow of discrete extended gradient systems,, Nonlinearity, 26 (2013), 2051. doi: 10.1088/0951-7715/26/7/2051. Google Scholar

[28]

S. Slijepčević, An ergodic Poincaré-Bendixson theorem for scalar reaction diffusion equations,, in preparation., (). Google Scholar

[29]

J. Smillie, Competitive and cooperative tridiagonal systems of differential equations,, SIAM J. Math. Anal., 15 (1984), 530. doi: 10.1137/0515040. Google Scholar

[30]

H. L. Smith, Monotone dynamical systems,, Mathematical Surveys and Monographs, (1996). Google Scholar

[31]

D. Turaev and S. Zelik, Analytical proof of space-time chaos in Ginzburg-Landau equation,, Discrete Contin. Dyn. Sys., 28 (2010), 1713. doi: 10.3934/dcds.2010.28.1713. Google Scholar

[32]

S. Zelik, Formally gradient reaction-diffusion systems in $\mathbbR^n$ have zero spatio-temporal entropy,, Discrete Contin. Dyn. Sys., 2003 (): 960. Google Scholar

[1]

Ugo Bessi. Viscous Aubry-Mather theory and the Vlasov equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 379-420. doi: 10.3934/dcds.2014.34.379

[2]

David Grant, Mahesh K. Varanasi. Duality theory for space-time codes over finite fields. Advances in Mathematics of Communications, 2008, 2 (1) : 35-54. doi: 10.3934/amc.2008.2.35

[3]

Zhen-Hui Bu, Zhi-Cheng Wang. Curved fronts of monostable reaction-advection-diffusion equations in space-time periodic media. Communications on Pure & Applied Analysis, 2016, 15 (1) : 139-160. doi: 10.3934/cpaa.2016.15.139

[4]

Montgomery Taylor. The diffusion phenomenon for damped wave equations with space-time dependent coefficients. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5921-5941. doi: 10.3934/dcds.2018257

[5]

Yuming Zhang. On continuity equations in space-time domains. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4837-4873. doi: 10.3934/dcds.2018212

[6]

Min Niu, Bin Xie. Comparison theorem and correlation for stochastic heat equations driven by Lévy space-time white noises. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 2989-3009. doi: 10.3934/dcdsb.2018296

[7]

Andreas Hiltebrand, Siddhartha Mishra. Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography. Networks & Heterogeneous Media, 2016, 11 (1) : 145-162. doi: 10.3934/nhm.2016.11.145

[8]

Wen-Xin Qin. Modulation of uniform motion in diatomic Frenkel-Kontorova model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3773-3788. doi: 10.3934/dcds.2014.34.3773

[9]

Wen-Xin Qin. Rotating modes in the Frenkel-Kontorova model with periodic interaction potential. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1147-1158. doi: 10.3934/dcds.2010.27.1147

[10]

Hans Koch, Rafael De La Llave, Charles Radin. Aubry-Mather theory for functions on lattices. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 135-151. doi: 10.3934/dcds.1997.3.135

[11]

Susanne Pumplün, Thomas Unger. Space-time block codes from nonassociative division algebras. Advances in Mathematics of Communications, 2011, 5 (3) : 449-471. doi: 10.3934/amc.2011.5.449

[12]

Gerard A. Maugin, Martine Rousseau. Prolegomena to studies on dynamic materials and their space-time homogenization. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1599-1608. doi: 10.3934/dcdss.2013.6.1599

[13]

Dmitry Turaev, Sergey Zelik. Analytical proof of space-time chaos in Ginzburg-Landau equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1713-1751. doi: 10.3934/dcds.2010.28.1713

[14]

Frédérique Oggier, B. A. Sethuraman. Quotients of orders in cyclic algebras and space-time codes. Advances in Mathematics of Communications, 2013, 7 (4) : 441-461. doi: 10.3934/amc.2013.7.441

[15]

Grégory Berhuy. Algebraic space-time codes based on division algebras with a unitary involution. Advances in Mathematics of Communications, 2014, 8 (2) : 167-189. doi: 10.3934/amc.2014.8.167

[16]

Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3595-3622. doi: 10.3934/dcdsb.2017216

[17]

Vincent Astier, Thomas Unger. Galois extensions, positive involutions and an application to unitary space-time coding. Advances in Mathematics of Communications, 2019, 13 (3) : 513-516. doi: 10.3934/amc.2019032

[18]

Georgios T. Kossioris, Georgios E. Zouraris. Finite element approximations for a linear Cahn-Hilliard-Cook equation driven by the space derivative of a space-time white noise. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1845-1872. doi: 10.3934/dcdsb.2013.18.1845

[19]

Artur O. Lopes, Rafael O. Ruggiero. Large deviations and Aubry-Mather measures supported in nonhyperbolic closed geodesics. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1155-1174. doi: 10.3934/dcds.2011.29.1155

[20]

Fabio Camilli, Annalisa Cesaroni. A note on singular perturbation problems via Aubry-Mather theory. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 807-819. doi: 10.3934/dcds.2007.17.807

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]