July  2014, 34(7): 2703-2728. doi: 10.3934/dcds.2014.34.2703

Bubbling solutions for the Chern-Simons gauged $O(3)$ sigma model in $\mathbb{R}^2$

1. 

Department of Mathematics, Inha University, Incheon, 402-751, South Korea

2. 

Department of Mathematics and Research Institute for Basic Sciences, Kyung Hee University, 1 Hoegi-Dong, Dongdaemun-Gu, Seoul, 130-701

3. 

Taida Institute for Mathematical Sciences(TIMS), National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan

Received  May 2013 Revised  October 2013 Published  December 2013

In this paper, we construct multivortex solutions of the elliptic governing equation for the self-dual Chern-Simons gauged $O(3)$ sigma model in $\mathbb{R}^2$ when the Chern-Simons coupling parameter is sufficiently small, and the location of singular points satisfy suitable conditions. Our solutions show concentration phenomena at some points of the singular points as the coupling parameter tends to zero, and they are locally asymptotically radial near each blow-up point.
Citation: Kwangseok Choe, Jongmin Han, Chang-Shou Lin. Bubbling solutions for the Chern-Simons gauged $O(3)$ sigma model in $\mathbb{R}^2$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2703-2728. doi: 10.3934/dcds.2014.34.2703
References:
[1]

K. Arthur, D. Tchrakian and Y. Yang, Topological and nontopological self-dual Chern-Simons solitons in a gauged $O(3)$ model,, Phys. Rev. D (3), 54 (1996), 5245. doi: 10.1103/PhysRevD.54.5245.

[2]

D. Bartolucci, Y. Lee, C.-S. Lin and M. Onodera, Asymptotic analysis of solutions to a gauged $O(3)$ sigma model,, preprint., ().

[3]

M. S. Berger and Y. Y. Chen, Symmetric vortices for the Ginzberg-Landau equations of superconductivity and the nonlinear desingularization phenomenon,, J. Funct. Anal., 82 (1989), 259. doi: 10.1016/0022-1236(89)90071-2.

[4]

F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices,, Progress in Nonlinear Differential Equations and their Applications, (1994). doi: 10.1007/978-1-4612-0287-5.

[5]

D. Chae and O. Yu Imanuvilov, The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory,, Comm. Math. Phys., 215 (2000), 119. doi: 10.1007/s002200000302.

[6]

D. Chae and H.-S. Nam, Multiple existence of the multivortex solutions of the self-dual Chern-Simons $CP(1)$ model on a doubly periodic domain,, Lett. Math. Phys., 49 (1999), 297. doi: 10.1023/A:1007683108679.

[7]

H. Chan, C.-C. Fu and C.-S. Lin, Non-topological multi-vortex solutions to the self-dual Chern-Simons-Higgs equation,, Comm. Math. Phys., 231 (2002), 189. doi: 10.1007/s00220-002-0691-6.

[8]

X. Chen, S. Hastings, J. B. Mcleod and Y. Yang, A nonlinear elliptic equation arising from gauge field theory and cosmology,, Proc. Roy. Soc. London Ser. A, 446 (1994), 453. doi: 10.1098/rspa.1994.0115.

[9]

K. Choe, Periodic solutions in the Chern-Simons gauged $O(3)$ sigma model with a symmetric potential,, preprint., ().

[10]

K. Choe and J. Han, Existence and properties of radial solutions in the self-dual Chern-Simons $O(3)$ sigma model,, J. Math. Phys., 52 (2011). doi: 10.1063/1.3618327.

[11]

K. Choe, J. Han, C.-S. Lin and T.-C. Lin, Uniqueness and solution structure of nonlinear equations arising from the Chern-Simons gauged $O(3)$ sigma models,, J. Diff. Eqns., 255 (2013), 2136. doi: 10.1016/j.jde.2013.06.010.

[12]

K. Choe and H.-S. Nam, Existence and uniqueness of topological multivortex solutions of the self-dual Chern-Simons $CP(1)$ model,, Nonlin. Anal., 66 (2007), 2794. doi: 10.1016/j.na.2006.04.008.

[13]

K. Kimm, K. Lee and T. Lee, Anyonic Bogomol'nyi solitons in a gauged $O(3)$ sigma model,, Phys. Rev. D, 53 (1996), 4436. doi: 10.1103/PhysRevD.53.4436.

[14]

C.-S. Lin and S. Yan, Bubbling solutions for relativistic abelian Chern-Simons model on a torus,, Comm. Math. Phys., 297 (2010), 733.

[15]

H.-S. Nam, Asymptotics for the condensate multivortex solutions in the self-dual Chern-Simons CP(1) model,, J. Math. Phys., 42 (2001), 5698. doi: 10.1063/1.1409962.

[16]

Y. Yang, The existence of solitons in gauged sigma models with broken symmetry: Some remarks,, Lett. Math. Phys., 40 (1997), 177. doi: 10.1023/A:1007363726173.

show all references

References:
[1]

K. Arthur, D. Tchrakian and Y. Yang, Topological and nontopological self-dual Chern-Simons solitons in a gauged $O(3)$ model,, Phys. Rev. D (3), 54 (1996), 5245. doi: 10.1103/PhysRevD.54.5245.

[2]

D. Bartolucci, Y. Lee, C.-S. Lin and M. Onodera, Asymptotic analysis of solutions to a gauged $O(3)$ sigma model,, preprint., ().

[3]

M. S. Berger and Y. Y. Chen, Symmetric vortices for the Ginzberg-Landau equations of superconductivity and the nonlinear desingularization phenomenon,, J. Funct. Anal., 82 (1989), 259. doi: 10.1016/0022-1236(89)90071-2.

[4]

F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices,, Progress in Nonlinear Differential Equations and their Applications, (1994). doi: 10.1007/978-1-4612-0287-5.

[5]

D. Chae and O. Yu Imanuvilov, The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory,, Comm. Math. Phys., 215 (2000), 119. doi: 10.1007/s002200000302.

[6]

D. Chae and H.-S. Nam, Multiple existence of the multivortex solutions of the self-dual Chern-Simons $CP(1)$ model on a doubly periodic domain,, Lett. Math. Phys., 49 (1999), 297. doi: 10.1023/A:1007683108679.

[7]

H. Chan, C.-C. Fu and C.-S. Lin, Non-topological multi-vortex solutions to the self-dual Chern-Simons-Higgs equation,, Comm. Math. Phys., 231 (2002), 189. doi: 10.1007/s00220-002-0691-6.

[8]

X. Chen, S. Hastings, J. B. Mcleod and Y. Yang, A nonlinear elliptic equation arising from gauge field theory and cosmology,, Proc. Roy. Soc. London Ser. A, 446 (1994), 453. doi: 10.1098/rspa.1994.0115.

[9]

K. Choe, Periodic solutions in the Chern-Simons gauged $O(3)$ sigma model with a symmetric potential,, preprint., ().

[10]

K. Choe and J. Han, Existence and properties of radial solutions in the self-dual Chern-Simons $O(3)$ sigma model,, J. Math. Phys., 52 (2011). doi: 10.1063/1.3618327.

[11]

K. Choe, J. Han, C.-S. Lin and T.-C. Lin, Uniqueness and solution structure of nonlinear equations arising from the Chern-Simons gauged $O(3)$ sigma models,, J. Diff. Eqns., 255 (2013), 2136. doi: 10.1016/j.jde.2013.06.010.

[12]

K. Choe and H.-S. Nam, Existence and uniqueness of topological multivortex solutions of the self-dual Chern-Simons $CP(1)$ model,, Nonlin. Anal., 66 (2007), 2794. doi: 10.1016/j.na.2006.04.008.

[13]

K. Kimm, K. Lee and T. Lee, Anyonic Bogomol'nyi solitons in a gauged $O(3)$ sigma model,, Phys. Rev. D, 53 (1996), 4436. doi: 10.1103/PhysRevD.53.4436.

[14]

C.-S. Lin and S. Yan, Bubbling solutions for relativistic abelian Chern-Simons model on a torus,, Comm. Math. Phys., 297 (2010), 733.

[15]

H.-S. Nam, Asymptotics for the condensate multivortex solutions in the self-dual Chern-Simons CP(1) model,, J. Math. Phys., 42 (2001), 5698. doi: 10.1063/1.1409962.

[16]

Y. Yang, The existence of solitons in gauged sigma models with broken symmetry: Some remarks,, Lett. Math. Phys., 40 (1997), 177. doi: 10.1023/A:1007363726173.

[1]

Kwangseok Choe, Hyungjin Huh. Chern-Simons gauged sigma model into $ \mathbb{H}^2 $ and its self-dual equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4613-4646. doi: 10.3934/dcds.2019189

[2]

Youngae Lee. Non-topological solutions in a generalized Chern-Simons model on torus. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1315-1330. doi: 10.3934/cpaa.2017064

[3]

Youngae Lee. Topological solutions in the Maxwell-Chern-Simons model with anomalous magnetic moment. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1293-1314. doi: 10.3934/dcds.2018053

[4]

Youyan Wan, Jinggang Tan. The existence of nontrivial solutions to Chern-Simons-Schrödinger systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2765-2786. doi: 10.3934/dcds.2017119

[5]

Hartmut Pecher. Local solutions with infinite energy of the Maxwell-Chern-Simons-Higgs system in Lorenz gauge. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2193-2204. doi: 10.3934/dcds.2016.36.2193

[6]

Rodrigo Donizete Euzébio, Jaume Llibre. Periodic solutions of El Niño model through the Vallis differential system. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3455-3469. doi: 10.3934/dcds.2014.34.3455

[7]

Hartmut Pecher. The Chern-Simons-Higgs and the Chern-Simons-Dirac equations in Fourier-Lebesgue spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4875-4893. doi: 10.3934/dcds.2019199

[8]

Haitao Yang, Yibin Zhang. Boundary bubbling solutions for a planar elliptic problem with exponential Neumann data. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5467-5502. doi: 10.3934/dcds.2017238

[9]

Weiwei Ao. Sharp estimates for fully bubbling solutions of $B_2$ Toda system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1759-1788. doi: 10.3934/dcds.2016.36.1759

[10]

Hyungjin Huh. Towards the Chern-Simons-Higgs equation with finite energy. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1145-1159. doi: 10.3934/dcds.2011.30.1145

[11]

Nikolaos Bournaveas, Timothy Candy, Shuji Machihara. A note on the Chern-Simons-Dirac equations in the Coulomb gauge. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2693-2701. doi: 10.3934/dcds.2014.34.2693

[12]

Tiancong Chen, Qing Han. Smooth local solutions to Weingarten equations and $\sigma_k$-equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 653-660. doi: 10.3934/dcds.2016.36.653

[13]

Sigmund Selberg, Achenef Tesfahun. Global well-posedness of the Chern-Simons-Higgs equations with finite energy. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2531-2546. doi: 10.3934/dcds.2013.33.2531

[14]

Jianjun Yuan. On the well-posedness of Maxwell-Chern-Simons-Higgs system in the Lorenz gauge. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2389-2403. doi: 10.3934/dcds.2014.34.2389

[15]

Frank Merle, Hatem Zaag. O.D.E. type behavior of blow-up solutions of nonlinear heat equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 435-450. doi: 10.3934/dcds.2002.8.435

[16]

Tran van Trung. Construction of 3-designs using $(1,\sigma)$-resolution. Advances in Mathematics of Communications, 2016, 10 (3) : 511-524. doi: 10.3934/amc.2016022

[17]

Kota Ikeda, Masayasu Mimura. Traveling wave solutions of a 3-component reaction-diffusion model in smoldering combustion. Communications on Pure & Applied Analysis, 2012, 11 (1) : 275-305. doi: 10.3934/cpaa.2012.11.275

[18]

Anne Bronzi, Ricardo Rosa. On the convergence of statistical solutions of the 3D Navier-Stokes-$\alpha$ model as $\alpha$ vanishes. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 19-49. doi: 10.3934/dcds.2014.34.19

[19]

Vladimir V. Chepyzhov, E. S. Titi, Mark I. Vishik. On the convergence of solutions of the Leray-$\alpha $ model to the trajectory attractor of the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 481-500. doi: 10.3934/dcds.2007.17.481

[20]

Ruifeng Zhang, Nan Liu, Man An. Analytical solutions of Skyrme model. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2201-2211. doi: 10.3934/dcdss.2016092

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]