May  2014, 34(5): 2261-2281. doi: 10.3934/dcds.2014.34.2261

Scattering theory for the wave equation of a Hartree type in three space dimensions

1. 

Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan

Received  December 2012 Revised  August 2013 Published  October 2013

The paper concerns a scattering problem of the wave equation of a Hartree type with small initial data with fast decay. The equation is \[ \partial_t^2 u - \Delta u = V_1(x)u+ (V_2\ast |u|^{p-1})u , \qquad t\in {\bf R}, \; x \in {\bf R}^3, \] where $p\ge 3, \; V_1(x)=O(|x|^{-\gamma_1})$ with $\gamma_1>0$ as $|x|\to\infty, \; V_2(x) = \pm |x|^{-\gamma_2}$ with $\gamma_2>0$. We prove the existence of scattering operators under almost optimal conditions on the potentials and initial data in terms of decay, using pointwise estimates. Our result generalizes the one by [14, 15] for the case $p=3$.
Citation: Kimitoshi Tsutaya. Scattering theory for the wave equation of a Hartree type in three space dimensions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2261-2281. doi: 10.3934/dcds.2014.34.2261
References:
[1]

F. Asakura, Existence of a global solution to a semi-linear wave equation with slowly decreasing initial data in three space dimensions,, Comm. Partial Differential Equations, 11 (1986), 1459. doi: 10.1080/03605308608820470.

[2]

K. Hidano, Small data scattering and blow-up for a wave equation with a cubic convolution,, Funkcialaj Ekvacioj, 43 (2000), 559.

[3]

F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions,, Manuscripta Math., 28 (1979), 235. doi: 10.1007/BF01647974.

[4]

P. Karageorgis and K. Tsutaya, On the asymptotic behavior of nonlinear waves in the presence of a short-range potential,, Manuscripta Math., 119 (2006), 323. doi: 10.1007/s00229-005-0620-z.

[5]

P. Karageorgis and K. Tsutaya, On the Asymptotic Behavior of Solutions of the Wave Equation of Hartree Type,, in preparation., ().

[6]

P. Karageorgis and K. Tsutaya, Existence and Blow Up for A Hartree-Type Wave Equation,, in preparation., ().

[7]

H. Kubo, On Point-Wise Decay Estimates for the Wave Equation and Their Applications,, Dispersive nonlinear problems in mathematical physics, (2004), 123.

[8]

G. Perla Menzala and W. A. Strauss, On a wave equation with a cubic convolution,, J. Diff. Eq., 43 (1982), 93. doi: 10.1016/0022-0396(82)90076-6.

[9]

K. Mochizuki and T. Motai, On Small Data Scattering for Some Nonlinear Wave Equations,, Patterns and waves, (1986), 543. doi: 10.1016/S0168-2024(08)70145-0.

[10]

K. Mochizuki, On small data scattering with cubic convolution nonlinearity,, J. Math. Soc. Japan, 41 (1989), 143. doi: 10.2969/jmsj/04110143.

[11]

H. Pecher, Scattering for semilinear wave equations with small data in three space dimensions,, Math. Z., 198 (1988), 277. doi: 10.1007/BF01163296.

[12]

W. A. Strauss, Nonlinear invariant wave equations,, Lecture Notes in Phys., 73 (1978), 197.

[13]

W. A. Strauss and K. Tsutaya, Existence and blow up of small amplitude nonlinear waves with a negative potential,, Discrete Continuous Dynam. Systems, 3 (1997), 175. doi: 10.3934/dcds.1997.3.175.

[14]

K. Tsutaya, Global existence and blow up for a wave equation with a potential and a cubic convolution,, Nonlinear Analysis and Applications: to V. Lakshmikantham on his 80th Birthday. Vol. 1, (2003), 913.

[15]

K. Tsutaya, Scattering theory for a wave equation of Hartree type,, Differential & Difference Equations And Applications, (2006), 1061.

[16]

K. Tsutaya, Weighted estimates for a convolution appearing in the wave equation of Hartree type,, to appear in J. Math. Anal. Appl.., ().

show all references

References:
[1]

F. Asakura, Existence of a global solution to a semi-linear wave equation with slowly decreasing initial data in three space dimensions,, Comm. Partial Differential Equations, 11 (1986), 1459. doi: 10.1080/03605308608820470.

[2]

K. Hidano, Small data scattering and blow-up for a wave equation with a cubic convolution,, Funkcialaj Ekvacioj, 43 (2000), 559.

[3]

F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions,, Manuscripta Math., 28 (1979), 235. doi: 10.1007/BF01647974.

[4]

P. Karageorgis and K. Tsutaya, On the asymptotic behavior of nonlinear waves in the presence of a short-range potential,, Manuscripta Math., 119 (2006), 323. doi: 10.1007/s00229-005-0620-z.

[5]

P. Karageorgis and K. Tsutaya, On the Asymptotic Behavior of Solutions of the Wave Equation of Hartree Type,, in preparation., ().

[6]

P. Karageorgis and K. Tsutaya, Existence and Blow Up for A Hartree-Type Wave Equation,, in preparation., ().

[7]

H. Kubo, On Point-Wise Decay Estimates for the Wave Equation and Their Applications,, Dispersive nonlinear problems in mathematical physics, (2004), 123.

[8]

G. Perla Menzala and W. A. Strauss, On a wave equation with a cubic convolution,, J. Diff. Eq., 43 (1982), 93. doi: 10.1016/0022-0396(82)90076-6.

[9]

K. Mochizuki and T. Motai, On Small Data Scattering for Some Nonlinear Wave Equations,, Patterns and waves, (1986), 543. doi: 10.1016/S0168-2024(08)70145-0.

[10]

K. Mochizuki, On small data scattering with cubic convolution nonlinearity,, J. Math. Soc. Japan, 41 (1989), 143. doi: 10.2969/jmsj/04110143.

[11]

H. Pecher, Scattering for semilinear wave equations with small data in three space dimensions,, Math. Z., 198 (1988), 277. doi: 10.1007/BF01163296.

[12]

W. A. Strauss, Nonlinear invariant wave equations,, Lecture Notes in Phys., 73 (1978), 197.

[13]

W. A. Strauss and K. Tsutaya, Existence and blow up of small amplitude nonlinear waves with a negative potential,, Discrete Continuous Dynam. Systems, 3 (1997), 175. doi: 10.3934/dcds.1997.3.175.

[14]

K. Tsutaya, Global existence and blow up for a wave equation with a potential and a cubic convolution,, Nonlinear Analysis and Applications: to V. Lakshmikantham on his 80th Birthday. Vol. 1, (2003), 913.

[15]

K. Tsutaya, Scattering theory for a wave equation of Hartree type,, Differential & Difference Equations And Applications, (2006), 1061.

[16]

K. Tsutaya, Weighted estimates for a convolution appearing in the wave equation of Hartree type,, to appear in J. Math. Anal. Appl.., ().

[1]

Changhun Yang. Scattering results for Dirac Hartree-type equations with small initial data. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1711-1734. doi: 10.3934/cpaa.2019081

[2]

Binhua Feng, Xiangxia Yuan. On the Cauchy problem for the Schrödinger-Hartree equation. Evolution Equations & Control Theory, 2015, 4 (4) : 431-445. doi: 10.3934/eect.2015.4.431

[3]

Kenji Nakanishi. Modified wave operators for the Hartree equation with data, image and convergence in the same space. Communications on Pure & Applied Analysis, 2002, 1 (2) : 237-252. doi: 10.3934/cpaa.2002.1.237

[4]

Jianqing Chen. Sharp variational characterization and a Schrödinger equation with Hartree type nonlinearity. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1613-1628. doi: 10.3934/dcdss.2016066

[5]

Daniel Bouche, Youngjoon Hong, Chang-Yeol Jung. Asymptotic analysis of the scattering problem for the Helmholtz equations with high wave numbers. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1159-1181. doi: 10.3934/dcds.2017048

[6]

Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557

[7]

Jeong Ja Bae, Mitsuhiro Nakao. Existence problem for the Kirchhoff type wave equation with a localized weakly nonlinear dissipation in exterior domains. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 731-743. doi: 10.3934/dcds.2004.11.731

[8]

Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. On small data scattering of Hartree equations with short-range interaction. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1809-1823. doi: 10.3934/cpaa.2016016

[9]

Hironobu Sasaki. Remark on the scattering problem for the Klein-Gordon equation with power nonlinearity. Conference Publications, 2007, 2007 (Special) : 903-911. doi: 10.3934/proc.2007.2007.903

[10]

Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems & Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013

[11]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[12]

Gabriella Pinzari. Global Kolmogorov tori in the planetary $\boldsymbol N$-body problem. Announcement of result. Electronic Research Announcements, 2015, 22: 55-75. doi: 10.3934/era.2015.22.55

[13]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[14]

Toshiyuki Suzuki. Energy methods for Hartree type equations with inverse-square potentials. Evolution Equations & Control Theory, 2013, 2 (3) : 531-542. doi: 10.3934/eect.2013.2.531

[15]

Yanfang Gao, Zhiyong Wang. Minimal mass non-scattering solutions of the focusing L2-critical Hartree equations with radial data. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1979-2007. doi: 10.3934/dcds.2017084

[16]

Muhammad I. Mustafa. On the control of the wave equation by memory-type boundary condition. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1179-1192. doi: 10.3934/dcds.2015.35.1179

[17]

Luca Biasco, Laura Di Gregorio. Periodic solutions of Birkhoff-Lewis type for the nonlinear wave equation. Conference Publications, 2007, 2007 (Special) : 102-109. doi: 10.3934/proc.2007.2007.102

[18]

Alfredo Lorenzi, Eugenio Sinestrari. An identification problem for a nonlinear one-dimensional wave equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5253-5271. doi: 10.3934/dcds.2013.33.5253

[19]

Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control & Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307

[20]

Laurent Bourgeois, Dmitry Ponomarev, Jérémi Dardé. An inverse obstacle problem for the wave equation in a finite time domain. Inverse Problems & Imaging, 2019, 13 (2) : 377-400. doi: 10.3934/ipi.2019019

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]