# American Institute of Mathematical Sciences

May  2014, 34(5): 2105-2133. doi: 10.3934/dcds.2014.34.2105

## On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients

 1 Basque Center for Applied Mathematics (BCAM), Bizkaia Technology Park, Building 500, E-48160 Derio, Basque Country, Spain

Received  March 2013 Revised  August 2013 Published  October 2013

We study an optimal boundary control problem (OCP) associated to a linear elliptic equation $-\mathrm{div}\,\left(\nabla y+A(x)\nabla y\right)=f$. The characteristic feature of this equation is the fact that the matrix $A(x)=[a_{ij}(x)]_{i,j=1,\dots,N}$ is skew-symmetric, $a_{ij}(x)=-a_{ji}(x)$, measurable, and belongs to $L^2$-space (rather than $L^\infty$). In spite of the fact that the equations of this type can exhibit non-uniqueness of weak solutions--- namely, they have approximable solutions as well as another type of weak solutions that can not be obtained through an approximation of matrix $A$, the corresponding OCP is well-possed and admits a unique solution. At the same time, an optimal solution to such problem can inherit a singular character of the original matrix $A$. We indicate two types of optimal solutions to the above problem: the so-called variational and non-variational solutions, and show that each of that optimal solutions can be attainable by solutions of special optimal boundary control problems.
Citation: Peter I. Kogut. On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2105-2133. doi: 10.3934/dcds.2014.34.2105
##### References:
 [1] R. Adams, Sobolev Spaces,, Pure and Applied Mathematics, (1975). Google Scholar [2] G. Buttazzo and P. I. Kogut, Weak optimal controls in coefficients for linear elliptic problems,, Revista Matematica Complutense, 24 (2011), 83. doi: 10.1007/s13163-010-0030-y. Google Scholar [3] D. Cioranescu and P. Donato, An Introduction to Homogenization,, Oxford Lecture Series in Mathematics and its Applications, (1999). Google Scholar [4] D. Cioranescu and F. Murat, A strange term coming from nowhere,, in Topic in the Math. Modelling of Composit Materials, 31 (1997), 45. Google Scholar [5] M. C. Delfour and J.-P. Zolésio, Shapes and Geometries: Analysis, Differential Calculus, and Optimization,, Second edition. Advances in Design and Control, (2011). Google Scholar [6] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions,, Studies in Advanced Mathematics. CRC Press, (1992). Google Scholar [7] M. A. Fannjiang and G. C. Papanicolaou, Diffusion in turbulence,, Probab. Theory and Related Fields, 105 (1996), 279. doi: 10.1007/BF01192211. Google Scholar [8] A. V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications,, Theory and applications. Translated from the 1999 Russian original by Tamara Rozhkovskaya. Translations of Mathematical Monographs, (1999). Google Scholar [9] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications,, Academic Press, (1980). Google Scholar [10] P. I. Kogut and G. Leugering, Optimal Control Problems for Partial Differential Equations on Reticulated Domains: Approximation and Asymptotic Analysis,, Systems & Control: Foundations & Applications. Birkhäuser, (2011). doi: 10.1007/978-0-8176-8149-4. Google Scholar [11] P. I. Kogut and G. Leugering, Optimal $L^1$-control in coefficients for dirichlet elliptic problems: W-optimal solutions,, Journal of Optimization Theory and Applications, 150 (2011), 205. doi: 10.1007/s10957-011-9840-4. Google Scholar [12] P. I. Kogut and G. Leugering, Optimal $L^1$-control in coefficients for dirichlet elliptic problems: H-optimal solutions,, Zeitschrift für Analysis und ihre Anwendungen, 31 (2012), 31. doi: 10.4171/ZAA/1447. Google Scholar [13] J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations,, Springer-Verlag, (1971). Google Scholar [14] J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications,, Translated from the French by P. Kenneth. Die Grundlehren der mathematischen Wissenschaften, (1973). Google Scholar [15] T. Jin, V. Mazya and J. van Schaftinger, Pathological solutions to elliptic problems in divergence form with continuous coefficients,, C. R. Math. Acad. Sci. Paris, 347 (2009), 773. doi: 10.1016/j.crma.2009.05.008. Google Scholar [16] J. Serrin, Pathological solutions of elliptic differential equations,, Ann. Scuola Norm. Sup. Pisa, 18 (1964), 385. Google Scholar [17] J. L. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential,, J. of Functional Analysis, 173 (2000), 103. doi: 10.1006/jfan.1999.3556. Google Scholar [18] V. V. Zhikov, Weighted Sobolev spaces,, Sbornik: Mathematics, 189 (1998), 27. doi: 10.1070/SM1998v189n08ABEH000344. Google Scholar [19] V. V. Zhikov, Diffusion in incompressible random flow,, Functional Analysis and Its Applications, 31 (1997), 156. doi: 10.1007/BF02465783. Google Scholar [20] V. V. Zhikov, Remarks on the uniqueness of a solution of the Dirichlet problem for second-order elliptic equations with lower-order terms,, Functional Analysis and Its Applications, 38 (2004), 173. doi: 10.1023/B:FAIA.0000042802.86050.5e. Google Scholar

show all references

##### References:
 [1] R. Adams, Sobolev Spaces,, Pure and Applied Mathematics, (1975). Google Scholar [2] G. Buttazzo and P. I. Kogut, Weak optimal controls in coefficients for linear elliptic problems,, Revista Matematica Complutense, 24 (2011), 83. doi: 10.1007/s13163-010-0030-y. Google Scholar [3] D. Cioranescu and P. Donato, An Introduction to Homogenization,, Oxford Lecture Series in Mathematics and its Applications, (1999). Google Scholar [4] D. Cioranescu and F. Murat, A strange term coming from nowhere,, in Topic in the Math. Modelling of Composit Materials, 31 (1997), 45. Google Scholar [5] M. C. Delfour and J.-P. Zolésio, Shapes and Geometries: Analysis, Differential Calculus, and Optimization,, Second edition. Advances in Design and Control, (2011). Google Scholar [6] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions,, Studies in Advanced Mathematics. CRC Press, (1992). Google Scholar [7] M. A. Fannjiang and G. C. Papanicolaou, Diffusion in turbulence,, Probab. Theory and Related Fields, 105 (1996), 279. doi: 10.1007/BF01192211. Google Scholar [8] A. V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications,, Theory and applications. Translated from the 1999 Russian original by Tamara Rozhkovskaya. Translations of Mathematical Monographs, (1999). Google Scholar [9] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications,, Academic Press, (1980). Google Scholar [10] P. I. Kogut and G. Leugering, Optimal Control Problems for Partial Differential Equations on Reticulated Domains: Approximation and Asymptotic Analysis,, Systems & Control: Foundations & Applications. Birkhäuser, (2011). doi: 10.1007/978-0-8176-8149-4. Google Scholar [11] P. I. Kogut and G. Leugering, Optimal $L^1$-control in coefficients for dirichlet elliptic problems: W-optimal solutions,, Journal of Optimization Theory and Applications, 150 (2011), 205. doi: 10.1007/s10957-011-9840-4. Google Scholar [12] P. I. Kogut and G. Leugering, Optimal $L^1$-control in coefficients for dirichlet elliptic problems: H-optimal solutions,, Zeitschrift für Analysis und ihre Anwendungen, 31 (2012), 31. doi: 10.4171/ZAA/1447. Google Scholar [13] J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations,, Springer-Verlag, (1971). Google Scholar [14] J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications,, Translated from the French by P. Kenneth. Die Grundlehren der mathematischen Wissenschaften, (1973). Google Scholar [15] T. Jin, V. Mazya and J. van Schaftinger, Pathological solutions to elliptic problems in divergence form with continuous coefficients,, C. R. Math. Acad. Sci. Paris, 347 (2009), 773. doi: 10.1016/j.crma.2009.05.008. Google Scholar [16] J. Serrin, Pathological solutions of elliptic differential equations,, Ann. Scuola Norm. Sup. Pisa, 18 (1964), 385. Google Scholar [17] J. L. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential,, J. of Functional Analysis, 173 (2000), 103. doi: 10.1006/jfan.1999.3556. Google Scholar [18] V. V. Zhikov, Weighted Sobolev spaces,, Sbornik: Mathematics, 189 (1998), 27. doi: 10.1070/SM1998v189n08ABEH000344. Google Scholar [19] V. V. Zhikov, Diffusion in incompressible random flow,, Functional Analysis and Its Applications, 31 (1997), 156. doi: 10.1007/BF02465783. Google Scholar [20] V. V. Zhikov, Remarks on the uniqueness of a solution of the Dirichlet problem for second-order elliptic equations with lower-order terms,, Functional Analysis and Its Applications, 38 (2004), 173. doi: 10.1023/B:FAIA.0000042802.86050.5e. Google Scholar
 [1] Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967 [2] Pavel Drábek, Martina Langerová. Impulsive control of conservative periodic equations and systems: Variational approach. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3789-3802. doi: 10.3934/dcds.2018164 [3] Leonardo Colombo, Fernando Jiménez, David Martín de Diego. Variational integrators for mechanical control systems with symmetries. Journal of Computational Dynamics, 2015, 2 (2) : 193-225. doi: 10.3934/jcd.2015003 [4] Stanisław Migórski, Biao Zeng. Convergence of solutions to inverse problems for a class of variational-hemivariational inequalities. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4477-4498. doi: 10.3934/dcdsb.2018172 [5] Leonardo Colombo, David Martín de Diego. Second-order variational problems on Lie groupoids and optimal control applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6023-6064. doi: 10.3934/dcds.2016064 [6] Gastão S. F. Frederico, Delfim F. M. Torres. Noether's symmetry Theorem for variational and optimal control problems with time delay. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 619-630. doi: 10.3934/naco.2012.2.619 [7] Cédric M. Campos, Sina Ober-Blöbaum, Emmanuel Trélat. High order variational integrators in the optimal control of mechanical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4193-4223. doi: 10.3934/dcds.2015.35.4193 [8] Martin Brokate, Pavel Krejčí. Optimal control of ODE systems involving a rate independent variational inequality. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 331-348. doi: 10.3934/dcdsb.2013.18.331 [9] Yusuke Murase, Atsushi Kadoya, Nobuyuki Kenmochi. Optimal control problems for quasi-variational inequalities and its numerical approximation. Conference Publications, 2011, 2011 (Special) : 1101-1110. doi: 10.3934/proc.2011.2011.1101 [10] Leonardo Colombo, David Martín de Diego. Higher-order variational problems on lie groups and optimal control applications. Journal of Geometric Mechanics, 2014, 6 (4) : 451-478. doi: 10.3934/jgm.2014.6.451 [11] N. U. Ahmed. Weak solutions of stochastic reaction diffusion equations and their optimal control. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1011-1029. doi: 10.3934/dcdss.2018059 [12] Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025 [13] Micol Amar, Andrea Braides. A characterization of variational convergence for segmentation problems. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 347-369. doi: 10.3934/dcds.1995.1.347 [14] Juliette Bouhours, Grégroie Nadin. A variational approach to reaction-diffusion equations with forced speed in dimension 1. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1843-1872. doi: 10.3934/dcds.2015.35.1843 [15] Tong Li, Hui Yin. Convergence rate to strong boundary layer solutions for generalized BBM-Burgers equations with non-convex flux. Communications on Pure & Applied Analysis, 2014, 13 (2) : 835-858. doi: 10.3934/cpaa.2014.13.835 [16] Roberto Triggiani. Sharp regularity theory of second order hyperbolic equations with Neumann boundary control non-smooth in space. Evolution Equations & Control Theory, 2016, 5 (4) : 489-514. doi: 10.3934/eect.2016016 [17] Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 [18] Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Problems & Imaging, 2013, 7 (2) : 307-340. doi: 10.3934/ipi.2013.7.307 [19] Tim McGraw, Baba Vemuri, Evren Özarslan, Yunmei Chen, Thomas Mareci. Variational denoising of diffusion weighted MRI. Inverse Problems & Imaging, 2009, 3 (4) : 625-648. doi: 10.3934/ipi.2009.3.625 [20] Manuel González-Burgos, Sergio Guerrero, Jean Pierre Puel. Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation. Communications on Pure & Applied Analysis, 2009, 8 (1) : 311-333. doi: 10.3934/cpaa.2009.8.311

2018 Impact Factor: 1.143