May  2014, 34(5): 2061-2068. doi: 10.3934/dcds.2014.34.2061

The Fourier restriction norm method for the Zakharov-Kuznetsov equation

1. 

Heinrich-Heine-Universität Düsseldorf, Mathematisches Institut, Universitätsstraße 1, 40225 Düsseldorf, Germany

2. 

Universität Bielefeld, Fakultät für Mathematik, Postfach 10 01 31, 33501 Bielefeld, Germany

Received  February 2013 Revised  June 2013 Published  October 2013

The Cauchy problem for the Zakharov-Kuznetsov equation is shown to be locally well-posed in $H^s(\mathbb{R}^2)$ for all $s>\frac{1}{2}$ by using the Fourier restriction norm method and bilinear refinements of Strichartz type inequalities.
Citation: Axel Grünrock, Sebastian Herr. The Fourier restriction norm method for the Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2061-2068. doi: 10.3934/dcds.2014.34.2061
References:
[1]

M. Ben-Artzi, H. Koch and J.-C. Saut, Dispersion estimates for third order equations in two dimensions,, Comm. Partial Differential Equations, 28 (2003), 1943. doi: 10.1081/PDE-120025491. Google Scholar

[2]

H. A. Biagioni and F. Linares, Well-Posedness Results for the Modified Zakharov-Kuznetsov Equation,, In Nonlinear equations: Methods, (2001), 181. Google Scholar

[3]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation,, Geom. Funct. Anal., 3 (1993), 209. doi: 10.1007/BF01895688. Google Scholar

[4]

A. V. Faminskiĭ, The Cauchy problem for the Zakharov-Kuznetsov equation,, Differ. Equations, 31 (1995), 1002. Google Scholar

[5]

A. V. Faminskiĭ, Well-posed initial-boundary value problems for the Zakharov-Kuznetsov equation,, Electron. J. Differential Equations, (2008). Google Scholar

[6]

J.-M. Ghidaglia and J.-C. Saut, Nonelliptic Schrödinger equations,, J. Nonlinear Sci., 3 (1993), 169. doi: 10.1007/BF02429863. Google Scholar

[7]

J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system,, J. Funct. Anal., 151 (1997), 384. doi: 10.1006/jfan.1997.3148. Google Scholar

[8]

A. Grünrock, A bilinear Airy-estimate with application to gKdV-3,, Differential Integral Equations, 18 (2005), 1333. Google Scholar

[9]

C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations,, Indiana Univ. Math. J., 40 (1991), 33. doi: 10.1512/iumj.1991.40.40003. Google Scholar

[10]

C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle,, Comm. Pure Appl. Math., 46 (1993), 527. doi: 10.1002/cpa.3160460405. Google Scholar

[11]

C. E. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation,, J. Amer. Math. Soc., 9 (1996), 573. doi: 10.1090/S0894-0347-96-00200-7. Google Scholar

[12]

H. Koch and N. Tzvetkov., On the local well-posedness of the Benjamin-Ono equation in $H^s(\mathbbR)$,, Int. Math. Res. Not., 26 (2003), 1449. doi: 10.1155/S1073792803211260. Google Scholar

[13]

E. W. Laedke and K.-H. Spatschek, Nonlinear ion-acoustic waves in weak magnetic fields,, Phys. Fluids, 25 (1982), 985. doi: 10.1063/1.863853. Google Scholar

[14]

D. Lannes, F. Linares and J.-C. Saut, The Cauchy Problem for the Euler-Poisson System and Derivation of the Zakharov-Kuznetsov Equation., ArXiv e-prints, (2012). Google Scholar

[15]

F. Linares and A. Pastor, Well-posedness for the two-dimensional modified Zakharov-Kuznetsov equation,, SIAM J. Math. Anal., 41 (2009), 1323. doi: 10.1137/080739173. Google Scholar

[16]

F. Linares and A. Pastor., Local and global well-posedness for the 2D generalized Zakharov-Kuznetsov equation,, J. Funct. Anal., 260 (2011), 1060. doi: 10.1016/j.jfa.2010.11.005. Google Scholar

[17]

F. Linares, A. Pastor and J.-C. Saut, Well-posedness for the ZK equation in a cylinder and on the background of a KdV soliton,, Comm. Partial Differential Equations, 35 (2010), 1674. doi: 10.1080/03605302.2010.494195. Google Scholar

[18]

F. Linares and J.-C. Saut, The Cauchy problem for the 3D Zakharov-Kuznetsov equation,, Discrete Contin. Dyn. Syst., 24 (2009), 547. doi: 10.3934/dcds.2009.24.547. Google Scholar

[19]

M. Panthee, A note on the unique continuation property for Zakharov-Kuznetsov equation,, Nonlinear Anal., 59 (2004), 425. doi: 10.1016/j.na.2004.07.022. Google Scholar

[20]

F. Ribaud and S. Vento, Well-Posedness results for the three-dimensional Zakharov-Kuznetsov Equation,, SIAM J. Math. Anal., 44 (2012), 2289. doi: 10.1137/110850566. Google Scholar

[21]

F. Ribaud and S. Vento, A Note on the Cauchy problem for the 2D generalized Zakharov-Kuznetsov equations,, C. R. Math. Acad. Sci. Paris, 350 (2012), 499. doi: 10.1016/j.crma.2012.05.007. Google Scholar

[22]

J.-C. Saut and R. Temam, An initial boundary-value problem for the Zakharov-Kuznetsov equation,, Adv. Differential Equations, 15 (2010), 1001. Google Scholar

[23]

B. K. Shivamoggi, The Painlevé analysis of the Zakharov-Kuznetsov equation,, Phys. Scripta, 42 (1990), 641. doi: 10.1088/0031-8949/42/6/001. Google Scholar

[24]

V. E. Zakharov and E. A. Kuznetsov, Three-dimensional solitons,, Sov. Phys. JETP, 39 (1974), 285. Google Scholar

show all references

References:
[1]

M. Ben-Artzi, H. Koch and J.-C. Saut, Dispersion estimates for third order equations in two dimensions,, Comm. Partial Differential Equations, 28 (2003), 1943. doi: 10.1081/PDE-120025491. Google Scholar

[2]

H. A. Biagioni and F. Linares, Well-Posedness Results for the Modified Zakharov-Kuznetsov Equation,, In Nonlinear equations: Methods, (2001), 181. Google Scholar

[3]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation,, Geom. Funct. Anal., 3 (1993), 209. doi: 10.1007/BF01895688. Google Scholar

[4]

A. V. Faminskiĭ, The Cauchy problem for the Zakharov-Kuznetsov equation,, Differ. Equations, 31 (1995), 1002. Google Scholar

[5]

A. V. Faminskiĭ, Well-posed initial-boundary value problems for the Zakharov-Kuznetsov equation,, Electron. J. Differential Equations, (2008). Google Scholar

[6]

J.-M. Ghidaglia and J.-C. Saut, Nonelliptic Schrödinger equations,, J. Nonlinear Sci., 3 (1993), 169. doi: 10.1007/BF02429863. Google Scholar

[7]

J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system,, J. Funct. Anal., 151 (1997), 384. doi: 10.1006/jfan.1997.3148. Google Scholar

[8]

A. Grünrock, A bilinear Airy-estimate with application to gKdV-3,, Differential Integral Equations, 18 (2005), 1333. Google Scholar

[9]

C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations,, Indiana Univ. Math. J., 40 (1991), 33. doi: 10.1512/iumj.1991.40.40003. Google Scholar

[10]

C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle,, Comm. Pure Appl. Math., 46 (1993), 527. doi: 10.1002/cpa.3160460405. Google Scholar

[11]

C. E. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation,, J. Amer. Math. Soc., 9 (1996), 573. doi: 10.1090/S0894-0347-96-00200-7. Google Scholar

[12]

H. Koch and N. Tzvetkov., On the local well-posedness of the Benjamin-Ono equation in $H^s(\mathbbR)$,, Int. Math. Res. Not., 26 (2003), 1449. doi: 10.1155/S1073792803211260. Google Scholar

[13]

E. W. Laedke and K.-H. Spatschek, Nonlinear ion-acoustic waves in weak magnetic fields,, Phys. Fluids, 25 (1982), 985. doi: 10.1063/1.863853. Google Scholar

[14]

D. Lannes, F. Linares and J.-C. Saut, The Cauchy Problem for the Euler-Poisson System and Derivation of the Zakharov-Kuznetsov Equation., ArXiv e-prints, (2012). Google Scholar

[15]

F. Linares and A. Pastor, Well-posedness for the two-dimensional modified Zakharov-Kuznetsov equation,, SIAM J. Math. Anal., 41 (2009), 1323. doi: 10.1137/080739173. Google Scholar

[16]

F. Linares and A. Pastor., Local and global well-posedness for the 2D generalized Zakharov-Kuznetsov equation,, J. Funct. Anal., 260 (2011), 1060. doi: 10.1016/j.jfa.2010.11.005. Google Scholar

[17]

F. Linares, A. Pastor and J.-C. Saut, Well-posedness for the ZK equation in a cylinder and on the background of a KdV soliton,, Comm. Partial Differential Equations, 35 (2010), 1674. doi: 10.1080/03605302.2010.494195. Google Scholar

[18]

F. Linares and J.-C. Saut, The Cauchy problem for the 3D Zakharov-Kuznetsov equation,, Discrete Contin. Dyn. Syst., 24 (2009), 547. doi: 10.3934/dcds.2009.24.547. Google Scholar

[19]

M. Panthee, A note on the unique continuation property for Zakharov-Kuznetsov equation,, Nonlinear Anal., 59 (2004), 425. doi: 10.1016/j.na.2004.07.022. Google Scholar

[20]

F. Ribaud and S. Vento, Well-Posedness results for the three-dimensional Zakharov-Kuznetsov Equation,, SIAM J. Math. Anal., 44 (2012), 2289. doi: 10.1137/110850566. Google Scholar

[21]

F. Ribaud and S. Vento, A Note on the Cauchy problem for the 2D generalized Zakharov-Kuznetsov equations,, C. R. Math. Acad. Sci. Paris, 350 (2012), 499. doi: 10.1016/j.crma.2012.05.007. Google Scholar

[22]

J.-C. Saut and R. Temam, An initial boundary-value problem for the Zakharov-Kuznetsov equation,, Adv. Differential Equations, 15 (2010), 1001. Google Scholar

[23]

B. K. Shivamoggi, The Painlevé analysis of the Zakharov-Kuznetsov equation,, Phys. Scripta, 42 (1990), 641. doi: 10.1088/0031-8949/42/6/001. Google Scholar

[24]

V. E. Zakharov and E. A. Kuznetsov, Three-dimensional solitons,, Sov. Phys. JETP, 39 (1974), 285. Google Scholar

[1]

Zhaohi Huo, Yueling Jia, Qiaoxin Li. Global well-posedness for the 3D Zakharov-Kuznetsov equation in energy space $H^1$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1797-1851. doi: 10.3934/dcdss.2016075

[2]

Felipe Linares, Gustavo Ponce. On special regularity properties of solutions of the Zakharov-Kuznetsov equation. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1561-1572. doi: 10.3934/cpaa.2018074

[3]

Felipe Linares, Mahendra Panthee, Tristan Robert, Nikolay Tzvetkov. On the periodic Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3521-3533. doi: 10.3934/dcds.2019145

[4]

Francis Ribaud, Stéphane Vento. Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 449-483. doi: 10.3934/dcds.2017019

[5]

Takamori Kato. Global well-posedness for the Kawahara equation with low regularity. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1321-1339. doi: 10.3934/cpaa.2013.12.1321

[6]

Nathan Glatt-Holtz, Roger Temam, Chuntian Wang. Martingale and pathwise solutions to the stochastic Zakharov-Kuznetsov equation with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1047-1085. doi: 10.3934/dcdsb.2014.19.1047

[7]

Felipe Linares, Jean-Claude Saut. The Cauchy problem for the 3D Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 547-565. doi: 10.3934/dcds.2009.24.547

[8]

Barbara Kaltenbacher, Irena Lasiecka. Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. Conference Publications, 2011, 2011 (Special) : 763-773. doi: 10.3934/proc.2011.2011.763

[9]

Kenji Nakanishi, Hideo Takaoka, Yoshio Tsutsumi. Local well-posedness in low regularity of the MKDV equation with periodic boundary condition. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1635-1654. doi: 10.3934/dcds.2010.28.1635

[10]

Magdalena Czubak, Nina Pikula. Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1669-1683. doi: 10.3934/cpaa.2014.13.1669

[11]

Takafumi Akahori. Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds. Communications on Pure & Applied Analysis, 2010, 9 (2) : 261-280. doi: 10.3934/cpaa.2010.9.261

[12]

Hyungjin Huh, Bora Moon. Low regularity well-posedness for Gross-Neveu equations. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1903-1913. doi: 10.3934/cpaa.2015.14.1903

[13]

Vanessa Barros, Felipe Linares. A remark on the well-posedness of a degenerated Zakharov system. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1259-1274. doi: 10.3934/cpaa.2015.14.1259

[14]

Stefan Meyer, Mathias Wilke. Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces. Evolution Equations & Control Theory, 2013, 2 (2) : 365-378. doi: 10.3934/eect.2013.2.365

[15]

Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563

[16]

Hartmut Pecher. Low regularity well-posedness for the 3D Klein - Gordon - Schrödinger system. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1081-1096. doi: 10.3934/cpaa.2012.11.1081

[17]

Wenming Hu, Huicheng Yin. Well-posedness of low regularity solutions to the second order strictly hyperbolic equations with non-Lipschitzian coefficients. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1891-1919. doi: 10.3934/cpaa.2019088

[18]

M. Keel, Tristan Roy, Terence Tao. Global well-posedness of the Maxwell-Klein-Gordon equation below the energy norm. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 573-621. doi: 10.3934/dcds.2011.30.573

[19]

Gustavo Ponce, Jean-Claude Saut. Well-posedness for the Benney-Roskes/Zakharov- Rubenchik system. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 811-825. doi: 10.3934/dcds.2005.13.811

[20]

Hung Luong. Local well-posedness for the Zakharov system on the background of a line soliton. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2657-2682. doi: 10.3934/cpaa.2018126

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]