May  2014, 34(5): 1961-1993. doi: 10.3934/dcds.2014.34.1961

Multi-existence of multi-solitons for the supercritical nonlinear Schrödinger equation in one dimension

1. 

Université Lille 1, U.F.R. de Mathématiques, 59 655 Villeneuve d'Ascq Cédex,, France

Received  September 2010 Revised  July 2013 Published  October 2013

For the $L^2$ supercritical generalized Korteweg-de Vries equation, we proved in [2] the existence and uniqueness of an $N$-parameter family of $N$-solitons. Recall that, for any $N$ given solitons, we call $N$-soliton a solution of the equation which behaves as the sum of these $N$ solitons asymptotically as $t \to +\infty$. In the present paper, we also construct an $N$-parameter family of $N$-solitons for the supercritical nonlinear Schrödinger equation in dimension $1$. Nevertheless, we do not obtain any classification result; but recall that, even in subcritical and critical cases, no general uniqueness result has been proved yet.
Citation: Vianney Combet. Multi-existence of multi-solitons for the supercritical nonlinear Schrödinger equation in one dimension. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1961-1993. doi: 10.3934/dcds.2014.34.1961
References:
[1]

T. Cazenave and F. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$,, Nonlinear Analysis, 14 (1990), 807. doi: 10.1016/0362-546X(90)90023-A. Google Scholar

[2]

V. Combet, Multi-soliton solutions for the supercritical gKdV equations,, Communications in Partial Differential Equations, 36 (2011), 380. doi: 10.1080/03605302.2010.503770. Google Scholar

[3]

R. Côte, Y. Martel and F. Merle, Construction of multi-soliton solutions for the $L^2$-supercritical gKdV and NLS equations,, Revista Matematica Iberoamericana, 27 (2011), 273. doi: 10.4171/RMI/636. Google Scholar

[4]

T. Duyckaerts and F. Merle, Dynamic of threshold solutions for energy-critical NLS,, Geometric and Functional Analysis, 18 (2009), 1787. doi: 10.1007/s00039-009-0707-x. Google Scholar

[5]

T. Duyckaerts and S. Roudenko, Threshold solutions for the focusing 3d cubic Schrödinger equation,, Revista Matematica Iberoamericana, 26 (2010), 1. doi: 10.4171/RMI/592. Google Scholar

[6]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case,, Journal of Functional Analysis, 32 (1979), 1. doi: 10.1016/0022-1236(79)90076-4. Google Scholar

[7]

M. Grillakis, Analysis of the linearization around a critical point of an infinite dimensional hamiltonian system,, Communications on Pure and Applied Mathematics, 43 (1990), 299. doi: 10.1002/cpa.3160430302. Google Scholar

[8]

M. Grillakis, J. Shatah and W. A. Strauss, Stability theory of solitary waves in the presence of symmetry. I,, Journal of Functional Analysis, 74 (1987), 160. doi: 10.1016/0022-1236(87)90044-9. Google Scholar

[9]

Y. Martel, Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations,, American Journal of Mathematics, 127 (2005), 1103. doi: 10.1353/ajm.2005.0033. Google Scholar

[10]

Y. Martel and F. Merle, Multi solitary waves for nonlinear Schrödinger equations,, Annales de l'Institut Henri Poincaré/Analyse non linéaire, 23 (2006), 849. doi: 10.1016/j.anihpc.2006.01.001. Google Scholar

[11]

Y. Martel, F. Merle and T.-P. Tsai, Stability in $H^1$ of the sum of $K$ solitary waves for some nonlinear Schrödinger equations,, Duke Mathematical Journal, 133 (2006), 405. doi: 10.1215/S0012-7094-06-13331-8. Google Scholar

[12]

F. Merle, Construction of solutions with exactly $k$ blow-up points for the Schrödinger equation with critical nonlinearity,, Communications in Mathematical Physics, 129 (1990), 223. doi: 10.1007/BF02096981. Google Scholar

[13]

F. Merle and H. Zaag, Stability of the blow-up profile for equations of the type $u_t = \Delta u + |u|^{p-1}u$,, Duke Mathematical Journal, 86 (1997), 143. doi: 10.1215/S0012-7094-97-08605-1. Google Scholar

[14]

G. Perelman, Some results on the scattering of weakly interacting solitons for nonlinear Schrödinger equations,, Mathematical Topics, 14 (1997), 78. Google Scholar

[15]

G. Perelman, Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations,, Communications in Partial Differential Equations, 29 (2004), 1051. doi: 10.1081/PDE-200033754. Google Scholar

[16]

I. Rodnianski, W. Schlag and A. Soffer, Asymptotic Stability of N-soliton States of NLS,, preprint, (). Google Scholar

[17]

M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations,, SIAM Journal on Mathematical Analysis, 16 (1985), 472. doi: 10.1137/0516034. Google Scholar

show all references

References:
[1]

T. Cazenave and F. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$,, Nonlinear Analysis, 14 (1990), 807. doi: 10.1016/0362-546X(90)90023-A. Google Scholar

[2]

V. Combet, Multi-soliton solutions for the supercritical gKdV equations,, Communications in Partial Differential Equations, 36 (2011), 380. doi: 10.1080/03605302.2010.503770. Google Scholar

[3]

R. Côte, Y. Martel and F. Merle, Construction of multi-soliton solutions for the $L^2$-supercritical gKdV and NLS equations,, Revista Matematica Iberoamericana, 27 (2011), 273. doi: 10.4171/RMI/636. Google Scholar

[4]

T. Duyckaerts and F. Merle, Dynamic of threshold solutions for energy-critical NLS,, Geometric and Functional Analysis, 18 (2009), 1787. doi: 10.1007/s00039-009-0707-x. Google Scholar

[5]

T. Duyckaerts and S. Roudenko, Threshold solutions for the focusing 3d cubic Schrödinger equation,, Revista Matematica Iberoamericana, 26 (2010), 1. doi: 10.4171/RMI/592. Google Scholar

[6]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case,, Journal of Functional Analysis, 32 (1979), 1. doi: 10.1016/0022-1236(79)90076-4. Google Scholar

[7]

M. Grillakis, Analysis of the linearization around a critical point of an infinite dimensional hamiltonian system,, Communications on Pure and Applied Mathematics, 43 (1990), 299. doi: 10.1002/cpa.3160430302. Google Scholar

[8]

M. Grillakis, J. Shatah and W. A. Strauss, Stability theory of solitary waves in the presence of symmetry. I,, Journal of Functional Analysis, 74 (1987), 160. doi: 10.1016/0022-1236(87)90044-9. Google Scholar

[9]

Y. Martel, Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations,, American Journal of Mathematics, 127 (2005), 1103. doi: 10.1353/ajm.2005.0033. Google Scholar

[10]

Y. Martel and F. Merle, Multi solitary waves for nonlinear Schrödinger equations,, Annales de l'Institut Henri Poincaré/Analyse non linéaire, 23 (2006), 849. doi: 10.1016/j.anihpc.2006.01.001. Google Scholar

[11]

Y. Martel, F. Merle and T.-P. Tsai, Stability in $H^1$ of the sum of $K$ solitary waves for some nonlinear Schrödinger equations,, Duke Mathematical Journal, 133 (2006), 405. doi: 10.1215/S0012-7094-06-13331-8. Google Scholar

[12]

F. Merle, Construction of solutions with exactly $k$ blow-up points for the Schrödinger equation with critical nonlinearity,, Communications in Mathematical Physics, 129 (1990), 223. doi: 10.1007/BF02096981. Google Scholar

[13]

F. Merle and H. Zaag, Stability of the blow-up profile for equations of the type $u_t = \Delta u + |u|^{p-1}u$,, Duke Mathematical Journal, 86 (1997), 143. doi: 10.1215/S0012-7094-97-08605-1. Google Scholar

[14]

G. Perelman, Some results on the scattering of weakly interacting solitons for nonlinear Schrödinger equations,, Mathematical Topics, 14 (1997), 78. Google Scholar

[15]

G. Perelman, Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations,, Communications in Partial Differential Equations, 29 (2004), 1051. doi: 10.1081/PDE-200033754. Google Scholar

[16]

I. Rodnianski, W. Schlag and A. Soffer, Asymptotic Stability of N-soliton States of NLS,, preprint, (). Google Scholar

[17]

M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations,, SIAM Journal on Mathematical Analysis, 16 (1985), 472. doi: 10.1137/0516034. Google Scholar

[1]

Daehwan Kim, Juncheol Pyo. Existence and asymptotic behavior of helicoidal translating solitons of the mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5897-5919. doi: 10.3934/dcds.2018256

[2]

Zongming Guo, Xiaohong Guan, Yonggang Zhao. Uniqueness and asymptotic behavior of solutions of a biharmonic equation with supercritical exponent. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2613-2636. doi: 10.3934/dcds.2019109

[3]

Jaime Angulo Pava, Nataliia Goloshchapova. On the orbital instability of excited states for the NLS equation with the δ-interaction on a star graph. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5039-5066. doi: 10.3934/dcds.2018221

[4]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[5]

Fujun Zhou, Junde Wu, Shangbin Cui. Existence and asymptotic behavior of solutions to a moving boundary problem modeling the growth of multi-layer tumors. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1669-1688. doi: 10.3934/cpaa.2009.8.1669

[6]

Kazuhiro Kurata, Kotaro Morimoto. Construction and asymptotic behavior of multi-peak solutions to the Gierer-Meinhardt system with saturation. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1443-1482. doi: 10.3934/cpaa.2008.7.1443

[7]

Yuming Qin, Jianlin Zhang. Global existence and asymptotic behavior of spherically symmetric solutions for the multi-dimensional infrarelativistic model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2529-2574. doi: 10.3934/cpaa.2019115

[8]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao. Polynomial upper bounds for the orbital instability of the 1D cubic NLS below the energy norm. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 31-54. doi: 10.3934/dcds.2003.9.31

[9]

Zhipeng Qiu, Jun Yu, Yun Zou. The asymptotic behavior of a chemostat model. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 721-727. doi: 10.3934/dcdsb.2004.4.721

[10]

Sergey Zelik. Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 351-392. doi: 10.3934/dcds.2004.11.351

[11]

Mykhailo Potomkin. Asymptotic behavior of thermoviscoelastic Berger plate. Communications on Pure & Applied Analysis, 2010, 9 (1) : 161-192. doi: 10.3934/cpaa.2010.9.161

[12]

Hunseok Kang. Asymptotic behavior of a discrete turing model. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 265-284. doi: 10.3934/dcds.2010.27.265

[13]

Philippe Chartier, Norbert J. Mauser, Florian Méhats, Yong Zhang. Solving highly-oscillatory NLS with SAM: Numerical efficiency and long-time behavior. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1327-1349. doi: 10.3934/dcdss.2016053

[14]

Riccardo Adami, Diego Noja, Cecilia Ortoleva. Asymptotic stability for standing waves of a NLS equation with subcritical concentrated nonlinearity in dimension three: Neutral modes. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5837-5879. doi: 10.3934/dcds.2016057

[15]

G. A. Braga, A. Procacci, R. Sanchis. Ornstein-Zernike behavior for the Bernoulli bond percolation on $\mathbb Z^d$ in the supercritical regime. Communications on Pure & Applied Analysis, 2004, 3 (4) : 581-606. doi: 10.3934/cpaa.2004.3.581

[16]

Shin-Ichiro Ei, Kota Ikeda, Eiji Yanagida. Instability of multi-spot patterns in shadow systems of reaction-diffusion equations. Communications on Pure & Applied Analysis, 2015, 14 (2) : 717-736. doi: 10.3934/cpaa.2015.14.717

[17]

Chunpeng Wang. Boundary behavior and asymptotic behavior of solutions to a class of parabolic equations with boundary degeneracy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1041-1060. doi: 10.3934/dcds.2016.36.1041

[18]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[19]

Yong Liu. Even solutions of the Toda system with prescribed asymptotic behavior. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1779-1790. doi: 10.3934/cpaa.2011.10.1779

[20]

Jingyu Li. Asymptotic behavior of solutions to elliptic equations in a coated body. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1251-1267. doi: 10.3934/cpaa.2009.8.1251

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]