# American Institute of Mathematical Sciences

May  2014, 34(5): 1951-1959. doi: 10.3934/dcds.2014.34.1951

## An extended discrete Hardy-Littlewood-Sobolev inequality

 1 Department of Applied Mathematics, University of Colorado at Boulder, Colorado, United States, United States

Received  May 2013 Revised  July 2013 Published  October 2013

Hardy-Littlewood-Sobolev (HLS) Inequality fails in the critical'' case: $μ=n$. However, for discrete HLS, we can derive a finite form of HLS inequality with logarithm correction for a critical case: $μ=n$ and $p=q$, by limiting the inequality on a finite domain. The best constant in the inequality and its corresponding solution, the optimizer, are studied. First, we obtain a sharp estimate for the best constant. Then for the optimizer, we prove the uniqueness and a symmetry property. This is achieved by proving that the corresponding Euler-Lagrange equation has a unique nontrivial nonnegative critical point. Also, by using a discrete version of maximum principle, we prove certain monotonicity of this optimizer.
Citation: Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951
##### References:
 [1] W. Chen, C. Jin, C. Li and J. Lim, Weighted Hardy-Littlewood-Sobolev Inequalities and Systems of Integral Equations,, Discrete and Continuous Dynamical Systems, (2005), 164. Google Scholar [2] W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, Discrete Contin. Dyn. Syst., 24 (2009), 1167. doi: 10.3934/dcds.2009.24.1167. Google Scholar [3] W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615. doi: 10.1215/S0012-7094-91-06325-8. Google Scholar [4] W. Chen and C. Li, Indefinite elliptic problems in a domain,, Discrete Contin. Dynam. Systems, 3 (1997), 333. doi: 10.3934/dcds.1997.3.333. Google Scholar [5] W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, Discrete Contin. Dyn. Syst., 30 (2011), 1083. doi: 10.3934/dcds.2011.30.1083. Google Scholar [6] W. Chen and C. Li, Regularity of solutions for a system of integral equations,, Comm Pure Appl Anal, 4 (2005), 1. Google Scholar [7] W. Chen and C. Li, The best constant in some weighted Hardy-Littlewood-Sobolev inequality,, Proc. AMS, 136 (2008), 955. doi: 10.1090/S0002-9939-07-09232-5. Google Scholar [8] W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Commun. in Partial Differential Equations, 30 (2005), 59. doi: 10.1081/PDE-200044445. Google Scholar [9] W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation,, Disc. & Cont. Dynamics Sys., 12 (2005), 347. Google Scholar [10] W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure and Appl. Math., 59 (2006), 330. doi: 10.1002/cpa.20116. Google Scholar [11] L. E. Fraenkel, An introduction to maximum principles and symmetry in elliptic problems,, Cambridge Tracts in Mathematics, (2000). doi: 10.1017/CBO9780511569203. Google Scholar [12] B. Gidas, W. Ni and L. Nirenberg, Symmetry of Positive Solutions of Nonlinear Elliptic Equations in $R^n$,, Mathematical Analysis and Applications, (1981), 369. Google Scholar [13] F. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality,, Math Res Lett, 14 (2007), 373. doi: 10.4310/MRL.2007.v14.n3.a2. Google Scholar [14] C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661. doi: 10.1090/S0002-9939-05-08411-X. Google Scholar [15] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities,, Cambridge at the University Press, (1952). Google Scholar [16] J. Kigami, Analysis on Fractals,, Cambridge Tracts in Mathematics, (2001). doi: 10.1017/CBO9780511470943. Google Scholar [17] Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system of integral equations,, Calc. Var. Partial Differential Equations, 45 (2012), 43. doi: 10.1007/s00526-011-0450-7. Google Scholar [18] Y. Lei, C. Li and C. Ma, Decay estimation for positive solutions of a $\gamma$-Laplace equation,, Discrete Contin. Dyn. Syst., 30 (2011), 547. doi: 10.3934/dcds.2011.30.547. Google Scholar [19] C. Li and J. Lim, The singularity analysis of solutions to some integral equations,, Commun. Pure Appl. Anal, 6 (2007), 453. doi: 10.3934/cpaa.2007.6.453. Google Scholar [20] C. Li and J. Villavert, An extension of the Hardy-Littlewood-Pólya inequality,, Acta Mathematica Scientia, 31 (2011), 2285. doi: 10.1016/S0252-9602(11)60400-1. Google Scholar [21] E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. of Math., 118 (1983), 349. doi: 10.2307/2007032. Google Scholar [22] O. Perron, Zur Theorie der Matrices,, Mathematische Annalen, 64 (1907), 248. doi: 10.1007/BF01449896. Google Scholar [23] E. B. Stein and G. Weiss, Fractional integrals on n-dimensional Euclidean space,, J. Math. Mech., 7 (1958), 503. doi: 10.1512/iumj.1958.7.57030. Google Scholar

show all references

##### References:
 [1] W. Chen, C. Jin, C. Li and J. Lim, Weighted Hardy-Littlewood-Sobolev Inequalities and Systems of Integral Equations,, Discrete and Continuous Dynamical Systems, (2005), 164. Google Scholar [2] W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, Discrete Contin. Dyn. Syst., 24 (2009), 1167. doi: 10.3934/dcds.2009.24.1167. Google Scholar [3] W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615. doi: 10.1215/S0012-7094-91-06325-8. Google Scholar [4] W. Chen and C. Li, Indefinite elliptic problems in a domain,, Discrete Contin. Dynam. Systems, 3 (1997), 333. doi: 10.3934/dcds.1997.3.333. Google Scholar [5] W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, Discrete Contin. Dyn. Syst., 30 (2011), 1083. doi: 10.3934/dcds.2011.30.1083. Google Scholar [6] W. Chen and C. Li, Regularity of solutions for a system of integral equations,, Comm Pure Appl Anal, 4 (2005), 1. Google Scholar [7] W. Chen and C. Li, The best constant in some weighted Hardy-Littlewood-Sobolev inequality,, Proc. AMS, 136 (2008), 955. doi: 10.1090/S0002-9939-07-09232-5. Google Scholar [8] W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Commun. in Partial Differential Equations, 30 (2005), 59. doi: 10.1081/PDE-200044445. Google Scholar [9] W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation,, Disc. & Cont. Dynamics Sys., 12 (2005), 347. Google Scholar [10] W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure and Appl. Math., 59 (2006), 330. doi: 10.1002/cpa.20116. Google Scholar [11] L. E. Fraenkel, An introduction to maximum principles and symmetry in elliptic problems,, Cambridge Tracts in Mathematics, (2000). doi: 10.1017/CBO9780511569203. Google Scholar [12] B. Gidas, W. Ni and L. Nirenberg, Symmetry of Positive Solutions of Nonlinear Elliptic Equations in $R^n$,, Mathematical Analysis and Applications, (1981), 369. Google Scholar [13] F. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality,, Math Res Lett, 14 (2007), 373. doi: 10.4310/MRL.2007.v14.n3.a2. Google Scholar [14] C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661. doi: 10.1090/S0002-9939-05-08411-X. Google Scholar [15] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities,, Cambridge at the University Press, (1952). Google Scholar [16] J. Kigami, Analysis on Fractals,, Cambridge Tracts in Mathematics, (2001). doi: 10.1017/CBO9780511470943. Google Scholar [17] Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system of integral equations,, Calc. Var. Partial Differential Equations, 45 (2012), 43. doi: 10.1007/s00526-011-0450-7. Google Scholar [18] Y. Lei, C. Li and C. Ma, Decay estimation for positive solutions of a $\gamma$-Laplace equation,, Discrete Contin. Dyn. Syst., 30 (2011), 547. doi: 10.3934/dcds.2011.30.547. Google Scholar [19] C. Li and J. Lim, The singularity analysis of solutions to some integral equations,, Commun. Pure Appl. Anal, 6 (2007), 453. doi: 10.3934/cpaa.2007.6.453. Google Scholar [20] C. Li and J. Villavert, An extension of the Hardy-Littlewood-Pólya inequality,, Acta Mathematica Scientia, 31 (2011), 2285. doi: 10.1016/S0252-9602(11)60400-1. Google Scholar [21] E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. of Math., 118 (1983), 349. doi: 10.2307/2007032. Google Scholar [22] O. Perron, Zur Theorie der Matrices,, Mathematische Annalen, 64 (1907), 248. doi: 10.1007/BF01449896. Google Scholar [23] E. B. Stein and G. Weiss, Fractional integrals on n-dimensional Euclidean space,, J. Math. Mech., 7 (1958), 503. doi: 10.1512/iumj.1958.7.57030. Google Scholar
 [1] Giovanni Bonfanti, Arrigo Cellina. The validity of the Euler-Lagrange equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 511-517. doi: 10.3934/dcds.2010.28.511 [2] Stefano Bianchini. On the Euler-Lagrange equation for a variational problem. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 449-480. doi: 10.3934/dcds.2007.17.449 [3] Menita Carozza, Jan Kristensen, Antonia Passarelli di Napoli. On the validity of the Euler-Lagrange system. Communications on Pure & Applied Analysis, 2015, 14 (1) : 51-62. doi: 10.3934/cpaa.2015.14.51 [4] Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987 [5] Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577 [6] Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043 [7] H. O. Fattorini. The maximum principle in infinite dimension. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557 [8] Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499 [9] Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571-579. doi: 10.3934/proc.2003.2003.571 [10] Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013 [11] Chiun-Chuan Chen, Li-Chang Hung, Hsiao-Feng Liu. N-barrier maximum principle for degenerate elliptic systems and its application. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 791-821. doi: 10.3934/dcds.2018034 [12] Yunkyong Hyon, Do Young Kwak, Chun Liu. Energetic variational approach in complex fluids: Maximum dissipation principle. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1291-1304. doi: 10.3934/dcds.2010.26.1291 [13] Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195 [14] Yan Wang, Yanxiang Zhao, Lei Wang, Aimin Song, Yanping Ma. Stochastic maximum principle for partial information optimal investment and dividend problem of an insurer. Journal of Industrial & Management Optimization, 2018, 14 (2) : 653-671. doi: 10.3934/jimo.2017067 [15] Shanjian Tang. A second-order maximum principle for singular optimal stochastic controls. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1581-1599. doi: 10.3934/dcdsb.2010.14.1581 [16] H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77 [17] Isabeau Birindelli, Francoise Demengel. Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators. Communications on Pure & Applied Analysis, 2007, 6 (2) : 335-366. doi: 10.3934/cpaa.2007.6.335 [18] Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395 [19] Shaolin Ji, Xiaole Xue. A stochastic maximum principle for linear quadratic problem with nonconvex control domain. Mathematical Control & Related Fields, 2019, 9 (3) : 495-507. doi: 10.3934/mcrf.2019022 [20] Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

2018 Impact Factor: 1.143