May  2014, 34(5): 1747-1774. doi: 10.3934/dcds.2014.34.1747

Elliptic problems with nonlinear terms depending on the gradient and singular on the boundary: Interaction with a Hardy-Leray potential

1. 

Laboratoire D'Analyse Nonlinéaire et Mathématiques Appliquées, Université Aboubekr Belkaïd, Tlemcen, Tlemcen 13000, Algeria

2. 

Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Università di Roma Sapienza, via Scarpa 16, 00161 Roma, Italy

3. 

Departamento de Matemáticas, U. Autónoma de Madrid, 28049 Madrid

4. 

Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain

Received  July 2013 Revised  August 2013 Published  October 2013

In this article we consider the following family of nonlinear elliptic problems,
                         $-\Delta (u^m) - \lambda \frac{u^m}{|x|^2} = |Du|^q + c f(x). $
We will analyze the interaction between the Hardy-Leray potential and the gradient term getting existence and nonexistence results in bounded domains $\Omega\subset\mathbb{R}^N$, $N\ge 3$, containing the pole of the potential.
    Recall that $Λ_N = (\frac{N-2}{2})^2$ is the optimal constant in the Hardy-Leray inequality.
    1.For $0 < m \le 2$ we prove the existence of a critical exponent $q_+ \le 2$ such that for $q > q_+$, the above equation has no positive distributional solution. If $q < q_+$ we find solutions by using different alternative arguments.
    Moreover if $q = q_+ > 1$ we get the following alternative results.
    (a) If $m < 2$ and $q=q_+$ there is no solution.
    (b) If $m = 2$, then $q_+=2$ for all $\lambda$. We prove that there exists solution if and only if $2\lambda\leq\Lambda_N$ and, moreover, we find infinitely many positive solutions.
    2. If $m > 2$ we obtain some partial results on existence and nonexistence.
We emphasize that if $q(\frac{1}{m}-1)<-1$ and $1 < q \le 2$, there exists positive solutions for any $f \in L^1(Ω)$.
Citation: Boumediene Abdellaoui, Daniela Giachetti, Ireneo Peral, Magdalena Walias. Elliptic problems with nonlinear terms depending on the gradient and singular on the boundary: Interaction with a Hardy-Leray potential. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1747-1774. doi: 10.3934/dcds.2014.34.1747
References:
[1]

B. Abdellaoui, A. Dall'Aglio and I. Peral, Some Remarks on Elliptic Problems with Critical Growth in the Gradient,, J. Diff. Eq., 222 (2006), 21. doi: 10.1016/j.jde.2005.02.009. Google Scholar

[2]

B. Abdellaoui, D. Giachetti, I. Peral and M. Walias, Elliptic problems with nonlinear terms depending on the gradient and singular on the boundary,, Nonlinear Analysis, 74 (2011), 1355. doi: 10.1016/j.na.2010.10.008. Google Scholar

[3]

B. Abdellaoui and I. Peral, Nonexistence results for quasilinear elliptic equations related to Caffarelli-Kohn-Nirenberg inequalities,, Communications in Pure and Applied Analysis, 2 (2003), 539. doi: 10.3934/cpaa.2003.2.539. Google Scholar

[4]

B. Abdellaoui and I. Peral, The Equation $-\Delta u - \lambda \frac u{|x|^2} = |D u|^p + c f(x)$, the optimal power,, Ann. Scuola Norm. Sup. Pisa, VI (2007), 159. Google Scholar

[5]

B. Abdellaoui and I. Peral, Existence and nonexistence results for quasilinear elliptic equations involving the p-Laplacian with a critical potential,, Annali di Matematica Pura e Applicata, 182 (2003), 247. doi: 10.1007/s10231-002-0064-y. Google Scholar

[6]

B. Abdellaoui and I. Peral, A note on a critical problem with natural growth in the gradient,, J. Eur. Math. Soc., 8 (2006), 157. doi: 10.4171/JEMS/43. Google Scholar

[7]

N. E. Alaa and M. Pierre, Weak solutions of some quasilinear elliptic equations with data measures,, SIAM J. Math. Anal., 24 (1993), 23. doi: 10.1137/0524002. Google Scholar

[8]

D. Arcoya, L. Boccardo, T. Leonori and A. Porretta, Some elliptic problems with singular natural growth lower order terms,, J.diff. equation, 249 (2010), 2771. doi: 10.1016/j.jde.2010.05.009. Google Scholar

[9]

P. Baras and M. Pierre, Singularités éliminables pour des équations semi-linéaires,, Ann. Inst. Fourier, 34 (1984), 185. doi: 10.5802/aif.956. Google Scholar

[10]

L. Boccardo, Dirichlet problems with singular and gradient quadratic lower order terms,, ESAIM - Control, 14 (2008), 411. doi: 10.1051/cocv:2008031. Google Scholar

[11]

L.Boccardo and F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations,, Nonlinear Anal., 19 (1992), 581. doi: 10.1016/0362-546X(92)90023-8. Google Scholar

[12]

L. Boccardo, L. Orsina and I. Peral, A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential,, Discrete Contin. Dyn. Syst., 16 (2006), 513. doi: 10.3934/dcds.2006.16.513. Google Scholar

[13]

H. Brezis and X. Cabré, Some simple nonlinear PDE's without solution,, Boll. Unione. Mat. Ital. Sez. B, 8 (1998), 223. Google Scholar

[14]

H. Brezis and S. Kamin, Sublinear elliptic equations in $\mathbbR^N$,, Manuscripta Math., 74 (1992), 87. doi: 10.1007/BF02567660. Google Scholar

[15]

H. Brezis and A. Ponce, Kato's inequality when $\Delta u$ is a measure,, C.R. Math. Acad. Sci. Paris, 338 (2004), 599. doi: 10.1016/j.crma.2003.12.032. Google Scholar

[16]

L. Caffarelli, R. Kohn and L. Nirenberg, First Order Interpolation Inequality with Weights,, Compositio Math., 53 (1984), 259. Google Scholar

[17]

G. Dal Maso, F. Murat, L. Orsina, Luigi and A. Prignet, Renormalized solutions of elliptic equations with general measure data,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 28 (1999), 741. Google Scholar

[18]

D. Giachetti and F. Murat, An elliptic problem with a lower order term having singular behavior,, Boll. Unione Mat. Ital., 2 (2009), 349. Google Scholar

[19]

T. Kato, Schrödinger operators with singular potentials,, Israel J. Math., 13 (1972), 135. doi: 10.1007/BF02760233. Google Scholar

[20]

F. Murat, L'injection du cone positif de $H^{-1}$ dans $W^{-1,q}$ est compacte pour tout $q<2$,, J. Math. Pures Appl., 60 (1981), 309. Google Scholar

show all references

References:
[1]

B. Abdellaoui, A. Dall'Aglio and I. Peral, Some Remarks on Elliptic Problems with Critical Growth in the Gradient,, J. Diff. Eq., 222 (2006), 21. doi: 10.1016/j.jde.2005.02.009. Google Scholar

[2]

B. Abdellaoui, D. Giachetti, I. Peral and M. Walias, Elliptic problems with nonlinear terms depending on the gradient and singular on the boundary,, Nonlinear Analysis, 74 (2011), 1355. doi: 10.1016/j.na.2010.10.008. Google Scholar

[3]

B. Abdellaoui and I. Peral, Nonexistence results for quasilinear elliptic equations related to Caffarelli-Kohn-Nirenberg inequalities,, Communications in Pure and Applied Analysis, 2 (2003), 539. doi: 10.3934/cpaa.2003.2.539. Google Scholar

[4]

B. Abdellaoui and I. Peral, The Equation $-\Delta u - \lambda \frac u{|x|^2} = |D u|^p + c f(x)$, the optimal power,, Ann. Scuola Norm. Sup. Pisa, VI (2007), 159. Google Scholar

[5]

B. Abdellaoui and I. Peral, Existence and nonexistence results for quasilinear elliptic equations involving the p-Laplacian with a critical potential,, Annali di Matematica Pura e Applicata, 182 (2003), 247. doi: 10.1007/s10231-002-0064-y. Google Scholar

[6]

B. Abdellaoui and I. Peral, A note on a critical problem with natural growth in the gradient,, J. Eur. Math. Soc., 8 (2006), 157. doi: 10.4171/JEMS/43. Google Scholar

[7]

N. E. Alaa and M. Pierre, Weak solutions of some quasilinear elliptic equations with data measures,, SIAM J. Math. Anal., 24 (1993), 23. doi: 10.1137/0524002. Google Scholar

[8]

D. Arcoya, L. Boccardo, T. Leonori and A. Porretta, Some elliptic problems with singular natural growth lower order terms,, J.diff. equation, 249 (2010), 2771. doi: 10.1016/j.jde.2010.05.009. Google Scholar

[9]

P. Baras and M. Pierre, Singularités éliminables pour des équations semi-linéaires,, Ann. Inst. Fourier, 34 (1984), 185. doi: 10.5802/aif.956. Google Scholar

[10]

L. Boccardo, Dirichlet problems with singular and gradient quadratic lower order terms,, ESAIM - Control, 14 (2008), 411. doi: 10.1051/cocv:2008031. Google Scholar

[11]

L.Boccardo and F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations,, Nonlinear Anal., 19 (1992), 581. doi: 10.1016/0362-546X(92)90023-8. Google Scholar

[12]

L. Boccardo, L. Orsina and I. Peral, A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential,, Discrete Contin. Dyn. Syst., 16 (2006), 513. doi: 10.3934/dcds.2006.16.513. Google Scholar

[13]

H. Brezis and X. Cabré, Some simple nonlinear PDE's without solution,, Boll. Unione. Mat. Ital. Sez. B, 8 (1998), 223. Google Scholar

[14]

H. Brezis and S. Kamin, Sublinear elliptic equations in $\mathbbR^N$,, Manuscripta Math., 74 (1992), 87. doi: 10.1007/BF02567660. Google Scholar

[15]

H. Brezis and A. Ponce, Kato's inequality when $\Delta u$ is a measure,, C.R. Math. Acad. Sci. Paris, 338 (2004), 599. doi: 10.1016/j.crma.2003.12.032. Google Scholar

[16]

L. Caffarelli, R. Kohn and L. Nirenberg, First Order Interpolation Inequality with Weights,, Compositio Math., 53 (1984), 259. Google Scholar

[17]

G. Dal Maso, F. Murat, L. Orsina, Luigi and A. Prignet, Renormalized solutions of elliptic equations with general measure data,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 28 (1999), 741. Google Scholar

[18]

D. Giachetti and F. Murat, An elliptic problem with a lower order term having singular behavior,, Boll. Unione Mat. Ital., 2 (2009), 349. Google Scholar

[19]

T. Kato, Schrödinger operators with singular potentials,, Israel J. Math., 13 (1972), 135. doi: 10.1007/BF02760233. Google Scholar

[20]

F. Murat, L'injection du cone positif de $H^{-1}$ dans $W^{-1,q}$ est compacte pour tout $q<2$,, J. Math. Pures Appl., 60 (1981), 309. Google Scholar

[1]

Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure & Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527

[2]

Xiaomei Sun, Yimin Zhang. Elliptic equations with cylindrical potential and multiple critical exponents. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1943-1957. doi: 10.3934/cpaa.2013.12.1943

[3]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[4]

Yinbin Deng, Qi Gao, Dandan Zhang. Nodal solutions for Laplace equations with critical Sobolev and Hardy exponents on $R^N$. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 211-233. doi: 10.3934/dcds.2007.19.211

[5]

Massimiliano Berti, M. Matzeu, Enrico Valdinoci. On periodic elliptic equations with gradient dependence. Communications on Pure & Applied Analysis, 2008, 7 (3) : 601-615. doi: 10.3934/cpaa.2008.7.601

[6]

Dumitru Motreanu, Viorica V. Motreanu, Abdelkrim Moussaoui. Location of Nodal solutions for quasilinear elliptic equations with gradient dependence. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 293-307. doi: 10.3934/dcdss.2018016

[7]

Boumediene Abdellaoui, Ahmed Attar. Quasilinear elliptic problem with Hardy potential and singular term. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1363-1380. doi: 10.3934/cpaa.2013.12.1363

[8]

Yanfang Peng, Jing Yang. Sign-changing solutions to elliptic problems with two critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2015, 14 (2) : 439-455. doi: 10.3934/cpaa.2015.14.439

[9]

Fengshuang Gao, Yuxia Guo. Multiple solutions for a critical quasilinear equation with Hardy potential. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1977-2003. doi: 10.3934/dcdss.2019128

[10]

Jing Zhang, Shiwang Ma. Positive solutions of perturbed elliptic problems involving Hardy potential and critical Sobolev exponent. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1999-2009. doi: 10.3934/dcdsb.2016033

[11]

Mousomi Bhakta, Debangana Mukherjee. Semilinear nonlocal elliptic equations with critical and supercritical exponents. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1741-1766. doi: 10.3934/cpaa.2017085

[12]

Lucio Boccardo, Luigi Orsina, Ireneo Peral. A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 513-523. doi: 10.3934/dcds.2006.16.513

[13]

Emmanuel Hebey, Jérôme Vétois. Multiple solutions for critical elliptic systems in potential form. Communications on Pure & Applied Analysis, 2008, 7 (3) : 715-741. doi: 10.3934/cpaa.2008.7.715

[14]

Jinhui Chen, Haitao Yang. A result on Hardy-Sobolev critical elliptic equations with boundary singularities. Communications on Pure & Applied Analysis, 2007, 6 (1) : 191-201. doi: 10.3934/cpaa.2007.6.191

[15]

Yu Zheng, Carlos A. Santos, Zifei Shen, Minbo Yang. Least energy solutions for coupled hartree system with hardy-littlewood-sobolev critical exponents. Communications on Pure & Applied Analysis, 2020, 19 (1) : 329-369. doi: 10.3934/cpaa.2020018

[16]

Shuangjie Peng. Remarks on singular critical growth elliptic equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 707-719. doi: 10.3934/dcds.2006.14.707

[17]

Yinbin Deng, Shuangjie Peng, Li Wang. Infinitely many radial solutions to elliptic systems involving critical exponents. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 461-475. doi: 10.3934/dcds.2014.34.461

[18]

Italo Capuzzo Dolcetta, Antonio Vitolo. Glaeser's type gradient estimates for non-negative solutions of fully nonlinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 539-557. doi: 10.3934/dcds.2010.28.539

[19]

Daniela Giachetti, Francesco Petitta, Sergio Segura de León. Elliptic equations having a singular quadratic gradient term and a changing sign datum. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1875-1895. doi: 10.3934/cpaa.2012.11.1875

[20]

Jingxue Yin, Chunhua Jin. Critical exponents and traveling wavefronts of a degenerate-singular parabolic equation in non-divergence form. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 213-227. doi: 10.3934/dcdsb.2010.13.213

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (0)

[Back to Top]