April  2014, 34(4): 1301-1317. doi: 10.3934/dcds.2014.34.1301

Optimal location problems with routing cost

1. 

Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56127 Pisa

2. 

Dipartimento di Matematica - Università di Pisa, Largo B. Pontecorvo, 5, 56127 Pisa, Italy

3. 

Dipartimento di Ingegneria Aerospaziale - Università di Pisa, Via G. Caruso, 8, 56122 Pisa, Italy

Received  August 2012 Revised  November 2012 Published  October 2013

In the paper a model problem for the location of a given number $N$ of points in a given region $\Omega$ and with a given resources density $\rho(x)$ is considered. The main difference between the usual location problems and the present one is that in addition to the location cost an extra routing cost is considered, that takes into account the fact that the resources have to travel between the locations on a point-to-point basis. The limit problem as $N\to\infty$ is characterized and some applications to airfreight systems are shown.
Citation: Giuseppe Buttazzo, Serena Guarino Lo Bianco, Fabrizio Oliviero. Optimal location problems with routing cost. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1301-1317. doi: 10.3934/dcds.2014.34.1301
References:
[1]

K. A. Al Kaabi, "The Geography of Airfreight and Metropolitan Economies: Potential Connection,", Ph.D. thesis, (2010). Google Scholar

[2]

G. Bouchitté, C. Jimenez and M. Rajesh, Asymptotique d'un problème de positionnement optimal,, C. R. Acad. Sci. Paris, 335 (2002), 853. doi: 10.1016/S1631-073X(02)02575-X. Google Scholar

[3]

A. Brancolini, G. Buttazzo, F. Santambrogio and E. Stepanov, Long-term planning versus short-term planning in the asymptotical location problem,, ESAIM Control Optim. Calc. Var., 15 (2009), 509. doi: 10.1051/cocv:2008034. Google Scholar

[4]

G. Buttazzo, E. Oudet and E. Stepanov, Optimal transportation problems with free Dirichlet regions,, In, 51 (2002), 41. Google Scholar

[5]

G. Buttazzo and F. Santambrogio, A mass transportation model for the optimal planning of an urban region,, SIAM Rev., 51 (2009), 593. doi: 10.1137/090759197. Google Scholar

[6]

G. Buttazzo, F. Santambrogio and E. Stepanov, Asymptotic optimal location of facilities in a competition between population and industries,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 12 (2013), 239. Google Scholar

[7]

G. Buttazzo, F. Santambrogio and N. Varchon, Asymptotics of an optimal compliance-location problem,, ESAIM Control Optim. Calc. Var., 12 (2006), 752. doi: 10.1051/cocv:2006020. Google Scholar

[8]

P. Cohort, Limit theorems for random normalized distortion,, Ann. Appl. Prob., 14 (2004), 118. doi: 10.1214/aoap/1075828049. Google Scholar

[9]

G. Dal Maso, "An Introduction to $\Gamma$-Convergence,", Progress in Nonlinear Differential Equations and their Applications (PNLDE), 8 (1993). doi: 10.1007/978-1-4612-0327-8. Google Scholar

[10]

L. Fejes Tóth, "Lagerungen in der Ebene, auf der Kugel und im Raum,", Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, (1953). Google Scholar

[11]

A. Hofton, The identification of the airfreight operating cost parameters for the use in the Sika-Samgods freight model,, Tech. report, (2002). Google Scholar

[12]

J. P. Johnson and E. M. Gaier, Air cargo operations cost database,, NASA/CR-1998-207655, (1985), 1998. Google Scholar

[13]

F. Morgan and R. Bolton, Hexagonal economic regions solve the location problem,, Amer. Math. Monthly, 109 (2002), 165. doi: 10.2307/2695328. Google Scholar

show all references

References:
[1]

K. A. Al Kaabi, "The Geography of Airfreight and Metropolitan Economies: Potential Connection,", Ph.D. thesis, (2010). Google Scholar

[2]

G. Bouchitté, C. Jimenez and M. Rajesh, Asymptotique d'un problème de positionnement optimal,, C. R. Acad. Sci. Paris, 335 (2002), 853. doi: 10.1016/S1631-073X(02)02575-X. Google Scholar

[3]

A. Brancolini, G. Buttazzo, F. Santambrogio and E. Stepanov, Long-term planning versus short-term planning in the asymptotical location problem,, ESAIM Control Optim. Calc. Var., 15 (2009), 509. doi: 10.1051/cocv:2008034. Google Scholar

[4]

G. Buttazzo, E. Oudet and E. Stepanov, Optimal transportation problems with free Dirichlet regions,, In, 51 (2002), 41. Google Scholar

[5]

G. Buttazzo and F. Santambrogio, A mass transportation model for the optimal planning of an urban region,, SIAM Rev., 51 (2009), 593. doi: 10.1137/090759197. Google Scholar

[6]

G. Buttazzo, F. Santambrogio and E. Stepanov, Asymptotic optimal location of facilities in a competition between population and industries,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 12 (2013), 239. Google Scholar

[7]

G. Buttazzo, F. Santambrogio and N. Varchon, Asymptotics of an optimal compliance-location problem,, ESAIM Control Optim. Calc. Var., 12 (2006), 752. doi: 10.1051/cocv:2006020. Google Scholar

[8]

P. Cohort, Limit theorems for random normalized distortion,, Ann. Appl. Prob., 14 (2004), 118. doi: 10.1214/aoap/1075828049. Google Scholar

[9]

G. Dal Maso, "An Introduction to $\Gamma$-Convergence,", Progress in Nonlinear Differential Equations and their Applications (PNLDE), 8 (1993). doi: 10.1007/978-1-4612-0327-8. Google Scholar

[10]

L. Fejes Tóth, "Lagerungen in der Ebene, auf der Kugel und im Raum,", Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, (1953). Google Scholar

[11]

A. Hofton, The identification of the airfreight operating cost parameters for the use in the Sika-Samgods freight model,, Tech. report, (2002). Google Scholar

[12]

J. P. Johnson and E. M. Gaier, Air cargo operations cost database,, NASA/CR-1998-207655, (1985), 1998. Google Scholar

[13]

F. Morgan and R. Bolton, Hexagonal economic regions solve the location problem,, Amer. Math. Monthly, 109 (2002), 165. doi: 10.2307/2695328. Google Scholar

[1]

Sylvia Serfaty. Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1427-1451. doi: 10.3934/dcds.2011.31.1427

[2]

Florian De Vuyst, Francesco Salvarani. Numerical simulations of degenerate transport problems. Kinetic & Related Models, 2014, 7 (3) : 463-476. doi: 10.3934/krm.2014.7.463

[3]

Piernicola Bettiol, Nathalie Khalil. Necessary optimality conditions for average cost minimization problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2093-2124. doi: 10.3934/dcdsb.2019086

[4]

Liping Zhang, Soon-Yi Wu. Robust solutions to Euclidean facility location problems with uncertain data. Journal of Industrial & Management Optimization, 2010, 6 (4) : 751-760. doi: 10.3934/jimo.2010.6.751

[5]

Micol Amar, Andrea Braides. A characterization of variational convergence for segmentation problems. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 347-369. doi: 10.3934/dcds.1995.1.347

[6]

Jesus Garcia Azorero, Juan J. Manfredi, I. Peral, Julio D. Rossi. Limits for Monge-Kantorovich mass transport problems. Communications on Pure & Applied Analysis, 2008, 7 (4) : 853-865. doi: 10.3934/cpaa.2008.7.853

[7]

Adriana Navarro-Ramos, William Olvera-Lopez. A solution for discrete cost sharing problems with non rival consumption. Journal of Dynamics & Games, 2018, 5 (1) : 31-39. doi: 10.3934/jdg.2018004

[8]

Anh Son Ta, Le Thi Hoai An, Djamel Khadraoui, Pham Dinh Tao. Solving Partitioning-Hub Location-Routing Problem using DCA. Journal of Industrial & Management Optimization, 2012, 8 (1) : 87-102. doi: 10.3934/jimo.2012.8.87

[9]

Xuefeng Wang. The heterogeneous fleet location routing problem with simultaneous pickup and delivery and overloads. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1147-1166. doi: 10.3934/dcdss.2019079

[10]

Jiao-Yan Li, Xiao Hu, Zhong Wan. An integrated bi-objective optimization model and improved genetic algorithm for vehicle routing problems with temporal and spatial constraints. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2018200

[11]

Gianni Dal Maso. Ennio De Giorgi and $\mathbf\Gamma$-convergence. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1017-1021. doi: 10.3934/dcds.2011.31.1017

[12]

Alexander Mielke. Deriving amplitude equations via evolutionary $\Gamma$-convergence. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2679-2700. doi: 10.3934/dcds.2015.35.2679

[13]

Jie Zhao. Convergence rates for elliptic reiterated homogenization problems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2787-2795. doi: 10.3934/cpaa.2013.12.2787

[14]

Stefan Kindermann. Convergence of the gradient method for ill-posed problems. Inverse Problems & Imaging, 2017, 11 (4) : 703-720. doi: 10.3934/ipi.2017033

[15]

Alexander Mielke. Weak-convergence methods for Hamiltonian multiscale problems. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 53-79. doi: 10.3934/dcds.2008.20.53

[16]

Giuseppe Buttazzo, Eugene Stepanov. Transport density in Monge-Kantorovich problems with Dirichlet conditions. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 607-628. doi: 10.3934/dcds.2005.12.607

[17]

Pengwen Chen, Changfeng Gui. Alpha divergences based mass transport models for image matching problems. Inverse Problems & Imaging, 2011, 5 (3) : 551-590. doi: 10.3934/ipi.2011.5.551

[18]

Ibrahima Faye, Emmanuel Frénod, Diaraf Seck. Two-Scale numerical simulation of sand transport problems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 151-168. doi: 10.3934/dcdss.2015.8.151

[19]

Fengmin Wang, Dachuan Xu, Donglei Du, Chenchen Wu. Primal-dual approximation algorithms for submodular cost set cover problems with linear/submodular penalties. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 91-100. doi: 10.3934/naco.2015.5.91

[20]

Silvia Faggian. Boundary control problems with convex cost and dynamic programming in infinite dimension part II: Existence for HJB. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 323-346. doi: 10.3934/dcds.2005.12.323

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

[Back to Top]