March  2014, 34(3): 1131-1146. doi: 10.3934/dcds.2014.34.1131

Regarding the absolute stability of Størmer-Cowell methods

1. 

Dept. of Mathematical Sciences, NTNU Trondheim, N-7491 Trondheim, Norway

2. 

Dept. Computer Science, University of Leuven, Belgium, BE-3001 Heverlee

Received  September 2012 Revised  October 2012 Published  August 2013

High order variants of the classical Størmer-Cowell methods are still a popular class of methods for computations in celestial mechanics. In this work we shall investigate the absolute stability of Størmer-Cowell methods close to zero, and present a characterization of the stability of methods of all orders. In particular, we show that many methods are not absolutely stable at any point in a neighborhood of the origin.
Citation: Syvert P. Nørsett, Andreas Asheim. Regarding the absolute stability of Størmer-Cowell methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1131-1146. doi: 10.3934/dcds.2014.34.1131
References:
[1]

G. Dahlquist, On accuracy and unconditional stability of linear multistep methods for second order differential equations,, BIT; Nordisk Tidskrift for Informationsbehandling (BIT), 18 (1978), 133. doi: 10.1007/BF01931689. Google Scholar

[2]

W. Gautschi, Numerical integration of ordinary differential equations based on trigonometric polynomials,, Numerische Mathematik, 3 (1961), 381. doi: 10.1007/BF01386037. Google Scholar

[3]

K. Grazier, W. Newman, J. Hyman, P. Sharp and D. Goldstein, Achieving Brouwer's law with high-order Störmer multistep methods,, ANZIAM J., 46 (). Google Scholar

[4]

E. Hairer, C. Lubich and G. Wanner, Geometric numerical integration illustrated by the Störmer-Verlet method,, Acta Numerica, 12 (2003), 399. doi: 10.1017/S0962492902000144. Google Scholar

[5]

E. Hairer, S. Nørsett and G. Wanner, "Solving Ordinary Differential Equations: Nonstiff Problems, vol. 1,", Springer Verlag, (1993). Google Scholar

[6]

E. Hairer and G. Wanner, "Solving Ordinary Differential Equations {II}: Stiff and Differential-Algebraic Problems, vol. 2,", Springer, (2004). Google Scholar

[7]

P. Henrici, "Discrete Variable Methods in Ordinary Differential Equations, vol. 1,", New York: Wiley, (1962). Google Scholar

[8]

J. Lambert, "Computational Methods in Ordinary Differential Equations,", Wiley New York, (1973). Google Scholar

[9]

J. Lambert and I. Watson, Symmetric multistip methods for periodic initial value problems,, IMA Journal of Applied Mathematics, 18 (1976), 189. doi: 10.1093/imamat/18.2.189. Google Scholar

[10]

W. I. Newman, F. Varadi, A. Y. Lee, W. M. Kaula, K. R. Grazier and J. M. Hyman, Numerical integration, Lyapunov exponents and the outer Solar System,, Bulletin of the American Astronomical Society, 32 (2000). Google Scholar

[11]

G. Quinlan and S. Tremaine, Symmetric multistep methods for the numerical integration of planetary orbits,, The Astronomical Journal, 100 (1990), 1694. Google Scholar

[12]

P. Sharp, Comparisons of high order stormer and explicit Runge-kutta Nyström methods for N-body simulations of the solar system,, Tech. Rep., (2000). Google Scholar

[13]

E. Stiefel and D. G. Bettis, Stabilization of Cowell's method,, Numerische Mathematik, 13 (1969), 154. doi: 10.1007/BF02163234. Google Scholar

[14]

E. Thorbergsen, "Undersøkelse av Noen Metoder for Baneproblemer,", Master's thesis, (1976). Google Scholar

[15]

F. Varadi and B. Runnegar, Successive refinements in long-term integrations of planetary orbits,, The Astrophysical Journal, 592 (2003), 620. Google Scholar

show all references

References:
[1]

G. Dahlquist, On accuracy and unconditional stability of linear multistep methods for second order differential equations,, BIT; Nordisk Tidskrift for Informationsbehandling (BIT), 18 (1978), 133. doi: 10.1007/BF01931689. Google Scholar

[2]

W. Gautschi, Numerical integration of ordinary differential equations based on trigonometric polynomials,, Numerische Mathematik, 3 (1961), 381. doi: 10.1007/BF01386037. Google Scholar

[3]

K. Grazier, W. Newman, J. Hyman, P. Sharp and D. Goldstein, Achieving Brouwer's law with high-order Störmer multistep methods,, ANZIAM J., 46 (). Google Scholar

[4]

E. Hairer, C. Lubich and G. Wanner, Geometric numerical integration illustrated by the Störmer-Verlet method,, Acta Numerica, 12 (2003), 399. doi: 10.1017/S0962492902000144. Google Scholar

[5]

E. Hairer, S. Nørsett and G. Wanner, "Solving Ordinary Differential Equations: Nonstiff Problems, vol. 1,", Springer Verlag, (1993). Google Scholar

[6]

E. Hairer and G. Wanner, "Solving Ordinary Differential Equations {II}: Stiff and Differential-Algebraic Problems, vol. 2,", Springer, (2004). Google Scholar

[7]

P. Henrici, "Discrete Variable Methods in Ordinary Differential Equations, vol. 1,", New York: Wiley, (1962). Google Scholar

[8]

J. Lambert, "Computational Methods in Ordinary Differential Equations,", Wiley New York, (1973). Google Scholar

[9]

J. Lambert and I. Watson, Symmetric multistip methods for periodic initial value problems,, IMA Journal of Applied Mathematics, 18 (1976), 189. doi: 10.1093/imamat/18.2.189. Google Scholar

[10]

W. I. Newman, F. Varadi, A. Y. Lee, W. M. Kaula, K. R. Grazier and J. M. Hyman, Numerical integration, Lyapunov exponents and the outer Solar System,, Bulletin of the American Astronomical Society, 32 (2000). Google Scholar

[11]

G. Quinlan and S. Tremaine, Symmetric multistep methods for the numerical integration of planetary orbits,, The Astronomical Journal, 100 (1990), 1694. Google Scholar

[12]

P. Sharp, Comparisons of high order stormer and explicit Runge-kutta Nyström methods for N-body simulations of the solar system,, Tech. Rep., (2000). Google Scholar

[13]

E. Stiefel and D. G. Bettis, Stabilization of Cowell's method,, Numerische Mathematik, 13 (1969), 154. doi: 10.1007/BF02163234. Google Scholar

[14]

E. Thorbergsen, "Undersøkelse av Noen Metoder for Baneproblemer,", Master's thesis, (1976). Google Scholar

[15]

F. Varadi and B. Runnegar, Successive refinements in long-term integrations of planetary orbits,, The Astrophysical Journal, 592 (2003), 620. Google Scholar

[1]

Jae-Hong Pyo, Jie Shen. Normal mode analysis of second-order projection methods for incompressible flows. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 817-840. doi: 10.3934/dcdsb.2005.5.817

[2]

Michael Herty, Giuseppe Visconti. Kinetic methods for inverse problems. Kinetic & Related Models, 2019, 12 (5) : 1109-1130. doi: 10.3934/krm.2019042

[3]

Lars Grüne, Vryan Gil Palma. Robustness of performance and stability for multistep and updated multistep MPC schemes. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4385-4414. doi: 10.3934/dcds.2015.35.4385

[4]

Jana Kopfová. Nonlinear semigroup methods in problems with hysteresis. Conference Publications, 2007, 2007 (Special) : 580-589. doi: 10.3934/proc.2007.2007.580

[5]

Andrew J. Steyer, Erik S. Van Vleck. Underlying one-step methods and nonautonomous stability of general linear methods. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2859-2877. doi: 10.3934/dcdsb.2018108

[6]

Huan-Zhen Chen, Zhao-Jie Zhou, Hong Wang, Hong-Ying Man. An optimal-order error estimate for a family of characteristic-mixed methods to transient convection-diffusion problems. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 325-341. doi: 10.3934/dcdsb.2011.15.325

[7]

Yin Yang, Yunqing Huang. Spectral Jacobi-Galerkin methods and iterated methods for Fredholm integral equations of the second kind with weakly singular kernel. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 685-702. doi: 10.3934/dcdss.2019043

[8]

Assyr Abdulle. Multiscale methods for advection-diffusion problems. Conference Publications, 2005, 2005 (Special) : 11-21. doi: 10.3934/proc.2005.2005.11

[9]

Jie Sun. On methods for solving nonlinear semidefinite optimization problems. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 1-14. doi: 10.3934/naco.2011.1.1

[10]

Alexander Mielke. Weak-convergence methods for Hamiltonian multiscale problems. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 53-79. doi: 10.3934/dcds.2008.20.53

[11]

José A. Cañizo, Alexis Molino. Improved energy methods for nonlocal diffusion problems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1405-1425. doi: 10.3934/dcds.2018057

[12]

Martin Hanke, William Rundell. On rational approximation methods for inverse source problems. Inverse Problems & Imaging, 2011, 5 (1) : 185-202. doi: 10.3934/ipi.2011.5.185

[13]

Daijun Jiang, Hui Feng, Jun Zou. Overlapping domain decomposition methods for linear inverse problems. Inverse Problems & Imaging, 2015, 9 (1) : 163-188. doi: 10.3934/ipi.2015.9.163

[14]

Thi Phuong Dong Nguyen, Jean Jacques Strodiot, Thi Thu Van Nguyen, Van Hien Nguyen. A family of extragradient methods for solving equilibrium problems. Journal of Industrial & Management Optimization, 2015, 11 (2) : 619-630. doi: 10.3934/jimo.2015.11.619

[15]

Dang Van Hieu. Projection methods for solving split equilibrium problems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2019056

[16]

Michał Jóźwikowski, Mikołaj Rotkiewicz. Bundle-theoretic methods for higher-order variational calculus. Journal of Geometric Mechanics, 2014, 6 (1) : 99-120. doi: 10.3934/jgm.2014.6.99

[17]

Xinlong Feng, Huailing Song, Tao Tang, Jiang Yang. Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation. Inverse Problems & Imaging, 2013, 7 (3) : 679-695. doi: 10.3934/ipi.2013.7.679

[18]

Qingguang Guan, Max Gunzburger. Stability and convergence of time-stepping methods for a nonlocal model for diffusion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1315-1335. doi: 10.3934/dcdsb.2015.20.1315

[19]

Jitraj Saha, Nilima Das, Jitendra Kumar, Andreas Bück. Numerical solutions for multidimensional fragmentation problems using finite volume methods. Kinetic & Related Models, 2019, 12 (1) : 79-103. doi: 10.3934/krm.2019004

[20]

O. Chadli, Z. Chbani, H. Riahi. Recession methods for equilibrium problems and applications to variational and hemivariational inequalities. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 185-196. doi: 10.3934/dcds.1999.5.185

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]