March  2014, 34(3): 1121-1130. doi: 10.3934/dcds.2014.34.1121

Integrability of nonholonomically coupled oscillators

1. 

Department of Mathematical Sciences, Chalmers University of Technology, Sweden

2. 

Department of Mathematics, University of Bergen, Norway

Received  December 2012 Revised  February 2013 Published  August 2013

We study a family of nonholonomic mechanical systems. These systems consist of harmonic oscillators coupled through nonholonomic constraints. The family includes the contact oscillator, which has been used as a test problem for numerical methods for nonholonomic mechanics. The systems under study constitute simple models for continuously variable transmission gearboxes.
    The main result is that each system in the family is integrable reversible with respect to the canonical reversibility map on the cotangent bundle. By using reversible Kolmogorov--Arnold--Moser theory, we then establish preservation of invariant tori for reversible perturbations. This result explains previous numerical observations, that some discretisations of the contact oscillator have favourable structure preserving properties.
Citation: Klas Modin, Olivier Verdier. Integrability of nonholonomically coupled oscillators. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1121-1130. doi: 10.3934/dcds.2014.34.1121
References:
[1]

V. I. Arnold, "Mathematical Methods of Classical Mechanics,", Springer-Verlag, (1989). Google Scholar

[2]

V. I. Arnold, V. Kozlov, A. I. Neishtadt and E. Khukhro, "Mathematical Aspects of Classical and Celestial Mechanics,", Springer-Verlag, (2006). doi: 10.1007/978-3-540-48926-9. Google Scholar

[3]

V. I. Arnold, "Ordinary Differential Equations,", Springer-Verlag, (2006). Google Scholar

[4]

A. M. Bloch, "Nonholonomic Mechanics and Control,", Springer-Verlag, (2003). doi: 10.1007/b97376. Google Scholar

[5]

A. M. Bloch, J. E. Marsden and D. V. Zenkov, Quasivelocities and symmetries in non-holonomic systems,, Dynamical Systems, 24 (2009), 187. doi: 10.1080/14689360802609344. Google Scholar

[6]

J. Cortés Monforte, "Geometric, Control and Numerical Aspects of Nonholonomic Systems,", Springer-Verlag, (2002). doi: 10.1007/b84020. Google Scholar

[7]

M. de León, J. C. Marrero and D. Martín de Diego, Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics,, J. Geom. Mech., 2 (2010), 159. doi: 10.3934/jgm.2010.2.159. Google Scholar

[8]

S. Ferraro, D. Iglesias and D. Martín de Diego, Momentum and energy preserving integrators for nonholonomic dynamics,, Nonlinearity, 21 (2008), 1911. doi: 10.1088/0951-7715/21/8/009. Google Scholar

[9]

S. J. Ferraro, D. Iglesias-Ponte and D. Martín de Diego, Numerical and geometric aspects of the nonholonomic Shake and Rattle methods,, Discrete Contin. Dyn. Syst., (2009), 220. Google Scholar

[10]

E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration,", Springer-Verlag, (2006). doi: 10.1007/3-540-30666-8. Google Scholar

[11]

D. Iglesias-Ponte, M. de León and D. Martín de Diego, Towards a Hamilton-Jacobi theory for nonholonomic mechanical systems,, J. Phys. A, 41 (2008). doi: 10.1088/1751-8113/41/1/015205. Google Scholar

[12]

M. Kobilarov, D. Martín de Diego and S. Ferraro, Simulating nonholonomic dynamics,, Bol. Soc. Esp. Mat. Apl. S$\vec{\e}$MA, 50 (2010), 61. Google Scholar

[13]

M. Kobilarov, J. E. Marsden and G. S. Sukhatme, Geometric discretization of nonholonomic systems with symmetries,, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 61. doi: 10.3934/dcdss.2010.3.61. Google Scholar

[14]

V. V. Kozlov, On the integration theory of equations of nonholonomic mechanics,, Regul. Chaotic Dyn., 7 (2002), 161. doi: 10.1070/RD2002v007n02ABEH000203. Google Scholar

[15]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry,", Springer-Verlag, (1999). doi: 10.1007/978-0-387-21792-5. Google Scholar

[16]

R. McLachlan and M. Perlmutter, Integrators for nonholonomic mechanical systems,, J. Nonlinear Sci., 16 (2006), 283. doi: 10.1007/s00332-005-0698-1. Google Scholar

[17]

T. Ohsawa, O. E. Fernandez, A. M. Bloch and D. V. Zenkov, Nonholonomic Hamilton-Jacobi theory via Chaplygin Hamiltonization,, J. Geom. Phys., 61 (2011), 1263. doi: 10.1016/j.geomphys.2011.02.015. Google Scholar

[18]

M. B. Sevryuk, KAM-stable Hamiltonians,, J. Dynam. Control Systems, 1 (1995), 351. doi: 10.1007/BF02269374. Google Scholar

[19]

M. B. Sevryuk, The finite-dimensional reversible KAM theory,, Phys. D, 112 (1998), 132. doi: 10.1016/S0167-2789(97)00207-8. Google Scholar

[20]

Z. Shang, KAM theorem of symplectic algorithms for Hamiltonian systems,, Numer. Math., 83 (1999), 477. doi: 10.1007/s002110050460. Google Scholar

[21]

Z. Shang, A note on the KAM theorem for symplectic mappings,, J. Dynam. Differential Equations, 12 (2000), 357. doi: 10.1023/A:1009068425415. Google Scholar

show all references

References:
[1]

V. I. Arnold, "Mathematical Methods of Classical Mechanics,", Springer-Verlag, (1989). Google Scholar

[2]

V. I. Arnold, V. Kozlov, A. I. Neishtadt and E. Khukhro, "Mathematical Aspects of Classical and Celestial Mechanics,", Springer-Verlag, (2006). doi: 10.1007/978-3-540-48926-9. Google Scholar

[3]

V. I. Arnold, "Ordinary Differential Equations,", Springer-Verlag, (2006). Google Scholar

[4]

A. M. Bloch, "Nonholonomic Mechanics and Control,", Springer-Verlag, (2003). doi: 10.1007/b97376. Google Scholar

[5]

A. M. Bloch, J. E. Marsden and D. V. Zenkov, Quasivelocities and symmetries in non-holonomic systems,, Dynamical Systems, 24 (2009), 187. doi: 10.1080/14689360802609344. Google Scholar

[6]

J. Cortés Monforte, "Geometric, Control and Numerical Aspects of Nonholonomic Systems,", Springer-Verlag, (2002). doi: 10.1007/b84020. Google Scholar

[7]

M. de León, J. C. Marrero and D. Martín de Diego, Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics,, J. Geom. Mech., 2 (2010), 159. doi: 10.3934/jgm.2010.2.159. Google Scholar

[8]

S. Ferraro, D. Iglesias and D. Martín de Diego, Momentum and energy preserving integrators for nonholonomic dynamics,, Nonlinearity, 21 (2008), 1911. doi: 10.1088/0951-7715/21/8/009. Google Scholar

[9]

S. J. Ferraro, D. Iglesias-Ponte and D. Martín de Diego, Numerical and geometric aspects of the nonholonomic Shake and Rattle methods,, Discrete Contin. Dyn. Syst., (2009), 220. Google Scholar

[10]

E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration,", Springer-Verlag, (2006). doi: 10.1007/3-540-30666-8. Google Scholar

[11]

D. Iglesias-Ponte, M. de León and D. Martín de Diego, Towards a Hamilton-Jacobi theory for nonholonomic mechanical systems,, J. Phys. A, 41 (2008). doi: 10.1088/1751-8113/41/1/015205. Google Scholar

[12]

M. Kobilarov, D. Martín de Diego and S. Ferraro, Simulating nonholonomic dynamics,, Bol. Soc. Esp. Mat. Apl. S$\vec{\e}$MA, 50 (2010), 61. Google Scholar

[13]

M. Kobilarov, J. E. Marsden and G. S. Sukhatme, Geometric discretization of nonholonomic systems with symmetries,, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 61. doi: 10.3934/dcdss.2010.3.61. Google Scholar

[14]

V. V. Kozlov, On the integration theory of equations of nonholonomic mechanics,, Regul. Chaotic Dyn., 7 (2002), 161. doi: 10.1070/RD2002v007n02ABEH000203. Google Scholar

[15]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry,", Springer-Verlag, (1999). doi: 10.1007/978-0-387-21792-5. Google Scholar

[16]

R. McLachlan and M. Perlmutter, Integrators for nonholonomic mechanical systems,, J. Nonlinear Sci., 16 (2006), 283. doi: 10.1007/s00332-005-0698-1. Google Scholar

[17]

T. Ohsawa, O. E. Fernandez, A. M. Bloch and D. V. Zenkov, Nonholonomic Hamilton-Jacobi theory via Chaplygin Hamiltonization,, J. Geom. Phys., 61 (2011), 1263. doi: 10.1016/j.geomphys.2011.02.015. Google Scholar

[18]

M. B. Sevryuk, KAM-stable Hamiltonians,, J. Dynam. Control Systems, 1 (1995), 351. doi: 10.1007/BF02269374. Google Scholar

[19]

M. B. Sevryuk, The finite-dimensional reversible KAM theory,, Phys. D, 112 (1998), 132. doi: 10.1016/S0167-2789(97)00207-8. Google Scholar

[20]

Z. Shang, KAM theorem of symplectic algorithms for Hamiltonian systems,, Numer. Math., 83 (1999), 477. doi: 10.1007/s002110050460. Google Scholar

[21]

Z. Shang, A note on the KAM theorem for symplectic mappings,, J. Dynam. Differential Equations, 12 (2000), 357. doi: 10.1023/A:1009068425415. Google Scholar

[1]

Hernán Cendra, Viviana A. Díaz. Lagrange-d'alembert-poincaré equations by several stages. Journal of Geometric Mechanics, 2018, 10 (1) : 1-41. doi: 10.3934/jgm.2018001

[2]

Luca Biasco, Luigi Chierchia. Exponential stability for the resonant D'Alembert model of celestial mechanics. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 569-594. doi: 10.3934/dcds.2005.12.569

[3]

Jean-Marie Souriau. On Geometric Mechanics. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 595-607. doi: 10.3934/dcds.2007.19.595

[4]

Paul Popescu, Cristian Ida. Nonlinear constraints in nonholonomic mechanics. Journal of Geometric Mechanics, 2014, 6 (4) : 527-547. doi: 10.3934/jgm.2014.6.527

[5]

Alessandra Celletti. Some KAM applications to Celestial Mechanics. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 533-544. doi: 10.3934/dcdss.2010.3.533

[6]

Gianne Derks. Book review: Geometric mechanics. Journal of Geometric Mechanics, 2009, 1 (2) : 267-270. doi: 10.3934/jgm.2009.1.267

[7]

Andrew D. Lewis. The physical foundations of geometric mechanics. Journal of Geometric Mechanics, 2017, 9 (4) : 487-574. doi: 10.3934/jgm.2017019

[8]

Marin Kobilarov, Jerrold E. Marsden, Gaurav S. Sukhatme. Geometric discretization of nonholonomic systems with symmetries. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 61-84. doi: 10.3934/dcdss.2010.3.61

[9]

Miguel Rodríguez-Olmos. Book review: Geometric mechanics and symmetry, by Darryl D. Holm, Tanya Schmah and Cristina Stoica. Journal of Geometric Mechanics, 2009, 1 (4) : 483-488. doi: 10.3934/jgm.2009.1.483

[10]

Tomoki Ohsawa, Anthony M. Bloch. Nonholonomic Hamilton-Jacobi equation and integrability. Journal of Geometric Mechanics, 2009, 1 (4) : 461-481. doi: 10.3934/jgm.2009.1.461

[11]

Larry M. Bates, Francesco Fassò, Nicola Sansonetto. The Hamilton-Jacobi equation, integrability, and nonholonomic systems. Journal of Geometric Mechanics, 2014, 6 (4) : 441-449. doi: 10.3934/jgm.2014.6.441

[12]

François Gay-Balmaz, Darryl D. Holm. Predicting uncertainty in geometric fluid mechanics. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-14. doi: 10.3934/dcdss.2020071

[13]

Sebastián J. Ferraro, David Iglesias-Ponte, D. Martín de Diego. Numerical and geometric aspects of the nonholonomic SHAKE and RATTLE methods. Conference Publications, 2009, 2009 (Special) : 220-229. doi: 10.3934/proc.2009.2009.220

[14]

Kurt Ehlers. Geometric equivalence on nonholonomic three-manifolds. Conference Publications, 2003, 2003 (Special) : 246-255. doi: 10.3934/proc.2003.2003.246

[15]

Andrea Davini, Maxime Zavidovique. Weak KAM theory for nonregular commuting Hamiltonians. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 57-94. doi: 10.3934/dcdsb.2013.18.57

[16]

Waldyr M. Oliva, Gláucio Terra. Improving E. Cartan considerations on the invariance of nonholonomic mechanics. Journal of Geometric Mechanics, 2019, 11 (3) : 439-446. doi: 10.3934/jgm.2019022

[17]

Takeshi Fukao, Nobuyuki Kenmochi. Abstract theory of variational inequalities and Lagrange multipliers. Conference Publications, 2013, 2013 (special) : 237-246. doi: 10.3934/proc.2013.2013.237

[18]

Luis C. garcía-Naranjo, Fernando Jiménez. The geometric discretisation of the Suslov problem: A case study of consistency for nonholonomic integrators. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4249-4275. doi: 10.3934/dcds.2017182

[19]

Simone Farinelli. Geometric arbitrage theory and market dynamics. Journal of Geometric Mechanics, 2015, 7 (4) : 431-471. doi: 10.3934/jgm.2015.7.431

[20]

Andrew D. Lewis, David R. Tyner. Geometric Jacobian linearization and LQR theory. Journal of Geometric Mechanics, 2010, 2 (4) : 397-440. doi: 10.3934/jgm.2010.2.397

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]