February  2013, 33(2): 837-859. doi: 10.3934/dcds.2013.33.837

Positive solutions for non local elliptic problems

1. 

Departamento de Matemática, Universidad Técnica Federico Santa María, Avda. España 1680, Valparaíso

Received  June 2011 Revised  March 2012 Published  September 2012

We establish existence and regularity results, as well as a priori estimates of Gidas-Spruck type for nonlinear problems involving the fractional power of the Dirichlet Laplacian.
Citation: Jinggang Tan. Positive solutions for non local elliptic problems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 837-859. doi: 10.3934/dcds.2013.33.837
References:
[1]

D. Applebaum, Lévy processes-from probability to finance and quantum groups,, Notices Amer. Math. Soc., 51 (2004), 1336. Google Scholar

[2]

H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method,, Bol. Soc. Brasil. Math., 22 (1991), 1. Google Scholar

[3]

K. Bogdan and B. Dyda, The best constant in a fractional Hardy inequality,, , (). Google Scholar

[4]

C. Brändle, E. Colorado and A. de Pablo, A concave-convex elliptic problem involving the fractional laplacian,, , (). Google Scholar

[5]

X. Cabre and E. Cinti, Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian,, Disc. Cont. Dyna. Syst., 28 (2010), 1179. doi: 10.3934/dcds.2010.28.1179. Google Scholar

[6]

X. Cabre and J. Solà-Morales, Layer solutions in a halfspace for boundary reactions,, Comm. Pure Appl. Math., 58 (2005), 1678. doi: 10.1002/cpa.20093. Google Scholar

[7]

X. Cabre and Y. Sire, Nonlinear equations for fractional laplacians I: regularity, maximum principles, and hamiltonian estimates,, preprint, (). Google Scholar

[8]

X. Cabre and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, Advances in Math., 224 (2010), 2052. doi: 10.1016/j.aim.2010.01.025. Google Scholar

[9]

L. Caffarelli, J. M. Roquejoffre and O. Savin, Nonlocal minimal surfaces,, Comm. Pure Appl. Math., 63 (2010), 1111. Google Scholar

[10]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Part. Diff. Equa., 32 (2007), 1245. Google Scholar

[11]

A. Capella, J. Davila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non local semilinear equations,, Comm. Partial Differential Equations, 36 (2011), 1353. Google Scholar

[12]

A. Chang, M. Gonzalez, Fractional Laplacian in conformal geometry,, Advances in Mathematics, 226 (2011), 1410. doi: 10.1016/j.aim.2010.07.016. Google Scholar

[13]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330. doi: 0.1002/cpa.20116. Google Scholar

[14]

M. Chipot, M. Chlebík, M. Fila and I. Shafrir, Existence of positive solutions of a semilinear elliptic equation in $\mathbbR_{+}^n$ with a nonlinear boundary condition,, J. Math. Anal. Appl., 223 (1998), 429. doi: 10.1006/jmaa.1998.5958. Google Scholar

[15]

P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian,, to appear in Proceedings of the Royal Society of Edinburgh: Section A Mathematics., (). Google Scholar

[16]

S. Filippas, L. Moschini and A. Tertikas, Sharp trace Hardy-Sobolev-Maz'ya inequalities and the fractional laplacian,, preprint., (). Google Scholar

[17]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209. doi: 10.1007/BF01221125. Google Scholar

[18]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, Comm. in Part. Diff. Equa., 6 (1981), 883. Google Scholar

[19]

Y. Y. Li, Remark on some conformally invariant integral equations: the method of moving spheres,, J. Eur. Math. Soc., 6 (2004), 153. doi: 10.4171/JEMS/6. Google Scholar

[20]

Y. Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres,, Duke Math. J., 80 (1995), 383. doi: 10.1215/S0012-7094-95-08016-8. Google Scholar

[21]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. of Math., 118 (1983), 349. doi: 10.2307/2007032. Google Scholar

[22]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator,, Comm. Pure Appl. Math., 60 (2006), 67. doi: 10.1002/cpa.20153. Google Scholar

[23]

M. Struwe, "Variational Methods,", Ergebnisse der Mathematik und ihrer Grenzgebiete 34, (1996). Google Scholar

[24]

S. Sugitani, On nonexistence of global solutions for some nonlinear integral equations,, Osaka J. Math., 12 (1975), 45. Google Scholar

[25]

J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian,, Calc. Vari. and Part. Diff. Equa., 42 (2011), 21. Google Scholar

[26]

J. Xiao, A sharp Sobolev trace inequality for the fractional-order derivatives,, Bull. Sci. Math., 130 (2006), 87. doi: 10.1016/j.bulsci.2005.07.002. Google Scholar

show all references

References:
[1]

D. Applebaum, Lévy processes-from probability to finance and quantum groups,, Notices Amer. Math. Soc., 51 (2004), 1336. Google Scholar

[2]

H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method,, Bol. Soc. Brasil. Math., 22 (1991), 1. Google Scholar

[3]

K. Bogdan and B. Dyda, The best constant in a fractional Hardy inequality,, , (). Google Scholar

[4]

C. Brändle, E. Colorado and A. de Pablo, A concave-convex elliptic problem involving the fractional laplacian,, , (). Google Scholar

[5]

X. Cabre and E. Cinti, Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian,, Disc. Cont. Dyna. Syst., 28 (2010), 1179. doi: 10.3934/dcds.2010.28.1179. Google Scholar

[6]

X. Cabre and J. Solà-Morales, Layer solutions in a halfspace for boundary reactions,, Comm. Pure Appl. Math., 58 (2005), 1678. doi: 10.1002/cpa.20093. Google Scholar

[7]

X. Cabre and Y. Sire, Nonlinear equations for fractional laplacians I: regularity, maximum principles, and hamiltonian estimates,, preprint, (). Google Scholar

[8]

X. Cabre and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, Advances in Math., 224 (2010), 2052. doi: 10.1016/j.aim.2010.01.025. Google Scholar

[9]

L. Caffarelli, J. M. Roquejoffre and O. Savin, Nonlocal minimal surfaces,, Comm. Pure Appl. Math., 63 (2010), 1111. Google Scholar

[10]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Part. Diff. Equa., 32 (2007), 1245. Google Scholar

[11]

A. Capella, J. Davila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non local semilinear equations,, Comm. Partial Differential Equations, 36 (2011), 1353. Google Scholar

[12]

A. Chang, M. Gonzalez, Fractional Laplacian in conformal geometry,, Advances in Mathematics, 226 (2011), 1410. doi: 10.1016/j.aim.2010.07.016. Google Scholar

[13]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330. doi: 0.1002/cpa.20116. Google Scholar

[14]

M. Chipot, M. Chlebík, M. Fila and I. Shafrir, Existence of positive solutions of a semilinear elliptic equation in $\mathbbR_{+}^n$ with a nonlinear boundary condition,, J. Math. Anal. Appl., 223 (1998), 429. doi: 10.1006/jmaa.1998.5958. Google Scholar

[15]

P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian,, to appear in Proceedings of the Royal Society of Edinburgh: Section A Mathematics., (). Google Scholar

[16]

S. Filippas, L. Moschini and A. Tertikas, Sharp trace Hardy-Sobolev-Maz'ya inequalities and the fractional laplacian,, preprint., (). Google Scholar

[17]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209. doi: 10.1007/BF01221125. Google Scholar

[18]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, Comm. in Part. Diff. Equa., 6 (1981), 883. Google Scholar

[19]

Y. Y. Li, Remark on some conformally invariant integral equations: the method of moving spheres,, J. Eur. Math. Soc., 6 (2004), 153. doi: 10.4171/JEMS/6. Google Scholar

[20]

Y. Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres,, Duke Math. J., 80 (1995), 383. doi: 10.1215/S0012-7094-95-08016-8. Google Scholar

[21]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. of Math., 118 (1983), 349. doi: 10.2307/2007032. Google Scholar

[22]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator,, Comm. Pure Appl. Math., 60 (2006), 67. doi: 10.1002/cpa.20153. Google Scholar

[23]

M. Struwe, "Variational Methods,", Ergebnisse der Mathematik und ihrer Grenzgebiete 34, (1996). Google Scholar

[24]

S. Sugitani, On nonexistence of global solutions for some nonlinear integral equations,, Osaka J. Math., 12 (1975), 45. Google Scholar

[25]

J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian,, Calc. Vari. and Part. Diff. Equa., 42 (2011), 21. Google Scholar

[26]

J. Xiao, A sharp Sobolev trace inequality for the fractional-order derivatives,, Bull. Sci. Math., 130 (2006), 87. doi: 10.1016/j.bulsci.2005.07.002. Google Scholar

[1]

Miaomiao Cai, Li Ma. Moving planes for nonlinear fractional Laplacian equation with negative powers. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4603-4615. doi: 10.3934/dcds.2018201

[2]

Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015

[3]

Pengyan Wang, Pengcheng Niu. A direct method of moving planes for a fully nonlinear nonlocal system. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1707-1718. doi: 10.3934/cpaa.2017082

[4]

Xudong Shang, Jihui Zhang, Yang Yang. Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Communications on Pure & Applied Analysis, 2014, 13 (2) : 567-584. doi: 10.3934/cpaa.2014.13.567

[5]

Baiyu Liu. Direct method of moving planes for logarithmic Laplacian system in bounded domains. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5339-5349. doi: 10.3934/dcds.2018235

[6]

Masahiro Ikeda, Takahisa Inui, Mamoru Okamoto, Yuta Wakasugi. $ L^p $-$ L^q $ estimates for the damped wave equation and the critical exponent for the nonlinear problem with slowly decaying data. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1967-2008. doi: 10.3934/cpaa.2019090

[7]

Raúl Ferreira, Julio D. Rossi. Decay estimates for a nonlocal $p-$Laplacian evolution problem with mixed boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1469-1478. doi: 10.3934/dcds.2015.35.1469

[8]

SYLWIA DUDEK, IWONA SKRZYPCZAK. Liouville theorems for elliptic problems in variable exponent spaces. Communications on Pure & Applied Analysis, 2017, 16 (2) : 513-532. doi: 10.3934/cpaa.2017026

[9]

M. Á. Burgos-Pérez, J. García-Melián, A. Quaas. Classification of supersolutions and Liouville theorems for some nonlinear elliptic problems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4703-4721. doi: 10.3934/dcds.2016004

[10]

Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168

[11]

Dariusz Idczak, Rafał Kamocki. Existence of optimal solutions to lagrange problem for a fractional nonlinear control system with riemann-liouville derivative. Mathematical Control & Related Fields, 2017, 7 (3) : 449-464. doi: 10.3934/mcrf.2017016

[12]

Eric R. Kaufmann. Existence and nonexistence of positive solutions for a nonlinear fractional boundary value problem. Conference Publications, 2009, 2009 (Special) : 416-423. doi: 10.3934/proc.2009.2009.416

[13]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[14]

D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure & Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499

[15]

Antonio Capella. Solutions of a pure critical exponent problem involving the half-laplacian in annular-shaped domains. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1645-1662. doi: 10.3934/cpaa.2011.10.1645

[16]

Alberto Farina. Symmetry of components, Liouville-type theorems and classification results for some nonlinear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5869-5877. doi: 10.3934/dcds.2015.35.5869

[17]

Giuseppina Barletta, Roberto Livrea, Nikolaos S. Papageorgiou. A nonlinear eigenvalue problem for the periodic scalar $p$-Laplacian. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1075-1086. doi: 10.3934/cpaa.2014.13.1075

[18]

Gabriele Bonanno, Giuseppina D'Aguì, Angela Sciammetta. One-dimensional nonlinear boundary value problems with variable exponent. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 179-191. doi: 10.3934/dcdss.2018011

[19]

Maoding Zhen, Jinchun He, Haoyun Xu. Critical system involving fractional Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (1) : 237-253. doi: 10.3934/cpaa.2019013

[20]

Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems & Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (17)

Other articles
by authors

[Back to Top]