February  2013, 33(2): 579-597. doi: 10.3934/dcds.2013.33.579

Pure discrete spectrum in substitution tiling spaces

1. 

Department of Mathematics, Montana State University, Bozeman, MT 59717, United States

2. 

Department of Mathematics, University of Zagreb, Bijenička 30, 10 000 Zagreb

3. 

Department of Mathematics, University of Texas, Austin, TX 78712, United States

Received  July 2011 Revised  April 2012 Published  September 2012

We introduce a technique for establishing pure discrete spectrum for substitution tiling systems of Pisot family type and illustrate with several examples.
Citation: Marcy Barge, Sonja Štimac, R. F. Williams. Pure discrete spectrum in substitution tiling spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 579-597. doi: 10.3934/dcds.2013.33.579
References:
[1]

S. Akiyama and J. Y. Lee, Algorithm for determining pure pointedness of self- affine tilings,, Adv. Math., 226 (2011), 2855. doi: 10.1016/j.aim.2010.07.019. Google Scholar

[2]

J. E. Anderson and I. F. Putnam, Topological invariants for substitution tilings and their associated $c^*$-algebras,, Ergodic Theory & Dynamical Systems, 18 (1998), 509. doi: 10.1017/S0143385798100457. Google Scholar

[3]

P. Arnoux and S. Ito, Pisot substitutions and Rauzy fractals,, Bull. Belg. Math Soc., 8 (2001), 18. Google Scholar

[4]

J. Auslander, "Minimal Flows and Their Extensions,", North-Holland Mathematical Studies, (1988). Google Scholar

[5]

M. Baake and R. V. Moody, Weighted Dirac combs with pure point diffraction,, J. Reine Angew. Math., 573 (2004), 61. doi: 10.1515/crll.2004.064. Google Scholar

[6]

V. Baker, M. Barge and J. Kwapisz, Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to $\beta$-shifts,, J. Instit. Fourier, 56 (2006), 2213. doi: 10.5802/aif.2238. Google Scholar

[7]

M. Barge, H. Bruin, L. Jones and L. Sadun, Homological Pisot substitutions and exact regularity,, To appear in Israel J. Math., (). Google Scholar

[8]

M. Barge and J. Kellendonk, Proximality and pure point spectrum for tiling dynamical systems,, preprint, (). Google Scholar

[9]

M. Barge, J. Kellendonk and S. Schmeiding, Maximal equicontinuous factors and cohomology of tiling spaces,, To appear in Fund. Math., (). Google Scholar

[10]

M. Barge and J. Kwapisz, Geometric theory of unimodular Pisot substitutions,, Amer J. Math., 128 (2006), 1219. doi: 10.1353/ajm.2006.0037. Google Scholar

[11]

M. Barge and C. Olimb, Asymptotic structure in substitution tiling spaces,, To appear in Ergodic Theory & Dynamical Systems, (). Google Scholar

[12]

V. Berthé, T. Jolivet and A. Siegel, Substitutive Arnoux-Rauzy substitutions have pure discrete spectrum,, preprint, (). Google Scholar

[13]

V. Berthé and A. Siegel, Tilings associated with beta-numeration and substitutions,, Integers: Electronic Journal of Combinatorial Number Theory, 5 (2005). Google Scholar

[14]

F. M. Dekking, The spectrum of dynamical systems arising from substitutions of constant length,, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 41 (1978), 221. Google Scholar

[15]

S. Dworkin, Spectral theory and X-ray diffraction,, J. Math. Phys., 34 (1993), 2965. doi: 10.1063/1.530108. Google Scholar

[16]

N. P. Fogg, "Substitutions in Dynamics, Arithmetics and Combinatorics,", Lecture notes in mathematics, (2002). Google Scholar

[17]

D. Fretlöh and B. Sing, Computing modular coincidences for substitution tilings and point sets,, Discrete Comput. Geom., 37 (2007), 381. doi: 10.1007/s00454-006-1280-9. Google Scholar

[18]

S. Ito and H. Rao, Atomic surfaces, tiling and coincidence I. Irreducible case,, Israel J. Math., 153 (2006), 129. doi: 10.1007/BF02771781. Google Scholar

[19]

R. Kenyon, Ph. D. Thesis,, Princeton University, (1990). Google Scholar

[20]

R. Kenyon and B. Solomyak, On the characterization of expansion maps for self-affine tilings,, Discrete Comput. Geom., 43 (2010), 577. Google Scholar

[21]

J. Y. Lee, Substitution Delone multisets with pure point spectrum are inter-model sets,, Journal of Geometry and Physics, 57 (2007), 2263. doi: 10.1016/j.geomphys.2007.07.003. Google Scholar

[22]

J. Y. Lee and R. Moody, Lattice substitution systems and model sets,, Discrete Comput. Geom., 25 (2001), 173. doi: 10.1007/s004540010083. Google Scholar

[23]

J. Y. Lee, R. Moody and B. Solomyak, Consequences of Pure Point Diffraction Spectra for Multiset Substitution Systems,, Discrete Comp. Geom., 29 (2003), 525. doi: 10.1007/s00454-003-0781-z. Google Scholar

[24]

J. Y. Lee and B. Solomyak, Pure point diffractive substitution Delone sets have the Meyer property,, Discrete Comp. Geom., 34 (2008), 319. doi: 10.1007/s00454-008-9054-1. Google Scholar

[25]

J. Y. Lee and B. Solomyak, Pisot family self-affine tilings, discrete spectrum, and the Meyer property,, preprint, (). Google Scholar

[26]

A. N. Livshits, Some examples of adic transformations and substitutions,, Selecta Math. Sovietica, 11 (1992), 83. Google Scholar

[27]

P. Michel, Coincidence values and spectra of substitutions,, Zeit. Wahr., 42 (1978), 205. doi: 10.1007/BF00641410. Google Scholar

[28]

A. Siegel and J. Thuswaldner, Topological properties of Rauzy fractals,, preprint., (). Google Scholar

[29]

V. F. Sirivent and B. Solomyak, Pure discrete spectrum for one-dimensional substitution systems of Pisot type,, Canad. Math. Bull., 45 (2002), 697. doi: 10.4153/CMB-2002-062-3. Google Scholar

[30]

B. Solomyak, Nonperiodicity implies unique composition for self-similar translationally finite tilings,, Discrete Comput. Geometry, 20 (1998), 265. doi: 10.1007/PL00009386. Google Scholar

[31]

B. Solomyak, Eigenfunctions for substitution tiling systems,, Advanced Studies in Pure Mathematics, 49 (2007), 433. Google Scholar

[32]

B. Solomyak, Dynamics of self-similar tilings,, Ergodic Theory & Dynamical Systems, 17 (1997), 695. doi: 10.1017/S0143385797084988. Google Scholar

[33]

W. A. Veech, The equicontinuous structure relation for minimal Abelian transformation groups,, Amer. J. of Math. 90 (1968), 90 (1968), 723. Google Scholar

show all references

References:
[1]

S. Akiyama and J. Y. Lee, Algorithm for determining pure pointedness of self- affine tilings,, Adv. Math., 226 (2011), 2855. doi: 10.1016/j.aim.2010.07.019. Google Scholar

[2]

J. E. Anderson and I. F. Putnam, Topological invariants for substitution tilings and their associated $c^*$-algebras,, Ergodic Theory & Dynamical Systems, 18 (1998), 509. doi: 10.1017/S0143385798100457. Google Scholar

[3]

P. Arnoux and S. Ito, Pisot substitutions and Rauzy fractals,, Bull. Belg. Math Soc., 8 (2001), 18. Google Scholar

[4]

J. Auslander, "Minimal Flows and Their Extensions,", North-Holland Mathematical Studies, (1988). Google Scholar

[5]

M. Baake and R. V. Moody, Weighted Dirac combs with pure point diffraction,, J. Reine Angew. Math., 573 (2004), 61. doi: 10.1515/crll.2004.064. Google Scholar

[6]

V. Baker, M. Barge and J. Kwapisz, Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to $\beta$-shifts,, J. Instit. Fourier, 56 (2006), 2213. doi: 10.5802/aif.2238. Google Scholar

[7]

M. Barge, H. Bruin, L. Jones and L. Sadun, Homological Pisot substitutions and exact regularity,, To appear in Israel J. Math., (). Google Scholar

[8]

M. Barge and J. Kellendonk, Proximality and pure point spectrum for tiling dynamical systems,, preprint, (). Google Scholar

[9]

M. Barge, J. Kellendonk and S. Schmeiding, Maximal equicontinuous factors and cohomology of tiling spaces,, To appear in Fund. Math., (). Google Scholar

[10]

M. Barge and J. Kwapisz, Geometric theory of unimodular Pisot substitutions,, Amer J. Math., 128 (2006), 1219. doi: 10.1353/ajm.2006.0037. Google Scholar

[11]

M. Barge and C. Olimb, Asymptotic structure in substitution tiling spaces,, To appear in Ergodic Theory & Dynamical Systems, (). Google Scholar

[12]

V. Berthé, T. Jolivet and A. Siegel, Substitutive Arnoux-Rauzy substitutions have pure discrete spectrum,, preprint, (). Google Scholar

[13]

V. Berthé and A. Siegel, Tilings associated with beta-numeration and substitutions,, Integers: Electronic Journal of Combinatorial Number Theory, 5 (2005). Google Scholar

[14]

F. M. Dekking, The spectrum of dynamical systems arising from substitutions of constant length,, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 41 (1978), 221. Google Scholar

[15]

S. Dworkin, Spectral theory and X-ray diffraction,, J. Math. Phys., 34 (1993), 2965. doi: 10.1063/1.530108. Google Scholar

[16]

N. P. Fogg, "Substitutions in Dynamics, Arithmetics and Combinatorics,", Lecture notes in mathematics, (2002). Google Scholar

[17]

D. Fretlöh and B. Sing, Computing modular coincidences for substitution tilings and point sets,, Discrete Comput. Geom., 37 (2007), 381. doi: 10.1007/s00454-006-1280-9. Google Scholar

[18]

S. Ito and H. Rao, Atomic surfaces, tiling and coincidence I. Irreducible case,, Israel J. Math., 153 (2006), 129. doi: 10.1007/BF02771781. Google Scholar

[19]

R. Kenyon, Ph. D. Thesis,, Princeton University, (1990). Google Scholar

[20]

R. Kenyon and B. Solomyak, On the characterization of expansion maps for self-affine tilings,, Discrete Comput. Geom., 43 (2010), 577. Google Scholar

[21]

J. Y. Lee, Substitution Delone multisets with pure point spectrum are inter-model sets,, Journal of Geometry and Physics, 57 (2007), 2263. doi: 10.1016/j.geomphys.2007.07.003. Google Scholar

[22]

J. Y. Lee and R. Moody, Lattice substitution systems and model sets,, Discrete Comput. Geom., 25 (2001), 173. doi: 10.1007/s004540010083. Google Scholar

[23]

J. Y. Lee, R. Moody and B. Solomyak, Consequences of Pure Point Diffraction Spectra for Multiset Substitution Systems,, Discrete Comp. Geom., 29 (2003), 525. doi: 10.1007/s00454-003-0781-z. Google Scholar

[24]

J. Y. Lee and B. Solomyak, Pure point diffractive substitution Delone sets have the Meyer property,, Discrete Comp. Geom., 34 (2008), 319. doi: 10.1007/s00454-008-9054-1. Google Scholar

[25]

J. Y. Lee and B. Solomyak, Pisot family self-affine tilings, discrete spectrum, and the Meyer property,, preprint, (). Google Scholar

[26]

A. N. Livshits, Some examples of adic transformations and substitutions,, Selecta Math. Sovietica, 11 (1992), 83. Google Scholar

[27]

P. Michel, Coincidence values and spectra of substitutions,, Zeit. Wahr., 42 (1978), 205. doi: 10.1007/BF00641410. Google Scholar

[28]

A. Siegel and J. Thuswaldner, Topological properties of Rauzy fractals,, preprint., (). Google Scholar

[29]

V. F. Sirivent and B. Solomyak, Pure discrete spectrum for one-dimensional substitution systems of Pisot type,, Canad. Math. Bull., 45 (2002), 697. doi: 10.4153/CMB-2002-062-3. Google Scholar

[30]

B. Solomyak, Nonperiodicity implies unique composition for self-similar translationally finite tilings,, Discrete Comput. Geometry, 20 (1998), 265. doi: 10.1007/PL00009386. Google Scholar

[31]

B. Solomyak, Eigenfunctions for substitution tiling systems,, Advanced Studies in Pure Mathematics, 49 (2007), 433. Google Scholar

[32]

B. Solomyak, Dynamics of self-similar tilings,, Ergodic Theory & Dynamical Systems, 17 (1997), 695. doi: 10.1017/S0143385797084988. Google Scholar

[33]

W. A. Veech, The equicontinuous structure relation for minimal Abelian transformation groups,, Amer. J. of Math. 90 (1968), 90 (1968), 723. Google Scholar

[1]

Marcy Barge. Pure discrete spectrum for a class of one-dimensional substitution tiling systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1159-1173. doi: 10.3934/dcds.2016.36.1159

[2]

Jeanette Olli. Endomorphisms of Sturmian systems and the discrete chair substitution tiling system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4173-4186. doi: 10.3934/dcds.2013.33.4173

[3]

Rui Pacheco, Helder Vilarinho. Statistical stability for multi-substitution tiling spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4579-4594. doi: 10.3934/dcds.2013.33.4579

[4]

Nazar Arakelian, Saeed Tafazolian, Fernando Torres. On the spectrum for the genera of maximal curves over small fields. Advances in Mathematics of Communications, 2018, 12 (1) : 143-149. doi: 10.3934/amc.2018009

[5]

Shigeki Akiyama. Strong coincidence and overlap coincidence. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5223-5230. doi: 10.3934/dcds.2016027

[6]

Kathryn Dabbs, Michael Kelly, Han Li. Effective equidistribution of translates of maximal horospherical measures in the space of lattices. Journal of Modern Dynamics, 2016, 10: 229-254. doi: 10.3934/jmd.2016.10.229

[7]

Bassam Fayad, A. Windsor. A dichotomy between discrete and continuous spectrum for a class of special flows over rotations. Journal of Modern Dynamics, 2007, 1 (1) : 107-122. doi: 10.3934/jmd.2007.1.107

[8]

Jeong-Yup Lee, Boris Solomyak. Pisot family self-affine tilings, discrete spectrum, and the Meyer property. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 935-959. doi: 10.3934/dcds.2012.32.935

[9]

Wen Huang, Zhiren Wang, Guohua Zhang. Möbius disjointness for topological models of ergodic systems with discrete spectrum. Journal of Modern Dynamics, 2019, 14: 277-290. doi: 10.3934/jmd.2019010

[10]

Nikolai Edeko. On the isomorphism problem for non-minimal transformations with discrete spectrum. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6001-6021. doi: 10.3934/dcds.2019262

[11]

Alexander Vladimirov. Equicontinuous sweeping processes. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 565-573. doi: 10.3934/dcdsb.2013.18.565

[12]

Yoshikazu Katayama, Colin E. Sutherland and Masamichi Takesaki. The intrinsic invariant of an approximately finite dimensional factor and the cocycle conjugacy of discrete amenable group actions. Electronic Research Announcements, 1995, 1: 43-47.

[13]

Qiying Hu, Chen Xu, Wuyi Yue. A unified model for state feedback of discrete event systems I: framework and maximal permissive state feedback. Journal of Industrial & Management Optimization, 2008, 4 (1) : 107-123. doi: 10.3934/jimo.2008.4.107

[14]

Byungik Kahng, Miguel Mendes. The characterization of maximal invariant sets of non-linear discrete-time control dynamical systems. Conference Publications, 2013, 2013 (special) : 393-406. doi: 10.3934/proc.2013.2013.393

[15]

Jie Li. How chaotic is an almost mean equicontinuous system?. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4727-4744. doi: 10.3934/dcds.2018208

[16]

Yung Chung Wang, Jenn Shing Wang, Fu Hsiang Tsai. Analysis of discrete-time space priority queue with fuzzy threshold. Journal of Industrial & Management Optimization, 2009, 5 (3) : 467-479. doi: 10.3934/jimo.2009.5.467

[17]

Rafael De La Llave, A. Windsor. An application of topological multiple recurrence to tiling. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 315-324. doi: 10.3934/dcdss.2009.2.315

[18]

S. Eigen, V. S. Prasad. Tiling Abelian groups with a single tile. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 361-365. doi: 10.3934/dcds.2006.16.361

[19]

Xiangying Meng, Gemma Huguet, John Rinzel. Type III excitability, slope sensitivity and coincidence detection. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2729-2757. doi: 10.3934/dcds.2012.32.2729

[20]

C. T. Cremins, G. Infante. A semilinear $A$-spectrum. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 235-242. doi: 10.3934/dcdss.2008.1.235

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]