November  2013, 33(11&12): 5525-5537. doi: 10.3934/dcds.2013.33.5525

Weighted pseudo almost automorphic mild solutions to semilinear integral equations with $S^{p}$-weighted pseudo almost automorphic coefficients

1. 

Department of Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China, China

2. 

Department of Mathematics, Morgan State University, 1700 E. Cold Spring Lane, Baltimore, M.D. 21251, United States

Received  November 2011 Published  May 2013

In this paper, we consider the existence of weighted pseudo almost automorphic solutions of the semilinear integral equation $x(t)= \int_{-\infty}^{t}a(t-s)[Ax(s) + f(s,x(s))]ds, \ t\in\mathbb{R}$ in a Banach space $\mathbb{X}$, where $a\in L^{1}(\mathbb{R}_{+})$, $A$ is the generator of an integral resolvent family of linear bounded operators defined on the Banach space $\mathbb{X}$, and $f : \mathbb{R}\times\mathbb{X} \rightarrow \mathbb{X}$ is a weighted pseudo almost automorphic function. The main results are proved by using integral resolvent families, suitable composition theorems combined with the theory of fixed points.
Citation: Rui Zhang, Yong-Kui Chang, G. M. N'Guérékata. Weighted pseudo almost automorphic mild solutions to semilinear integral equations with $S^{p}$-weighted pseudo almost automorphic coefficients. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5525-5537. doi: 10.3934/dcds.2013.33.5525
References:
[1]

C. Cuevas and C. Lizama, Almost automorphic solutions to integral equations on the line,, Semigroup Forum, 79 (2009), 461. doi: 10.1007/s00233-009-9154-0.

[2]

H. R. Henríquez and C. Lizama, Compact almost automorphic solutions to integral equations with infinite delay,, Nonlinear Anal., 71 (2009), 6029. doi: 10.1016/j.na.2009.05.042.

[3]

Z. H. Zhao, Y. K. Chang and G. M. N'Guérékata, Pseudo-almost automorphic mild solutions to semilinear integral equations in a Banach space,, Nonlinear Anal., 74 (2011), 2887. doi: 10.1016/j.na.2011.01.018.

[4]

R. Zhang, Y. K. Chang and G. M. N'Guérékata, New composition theorems of Stepanov-like weighted pseudo almost automorphic functions and applications to nonautonomous evolution equations,, Nonlinear Anal. RWA, 13 (2012), 2866. doi: 10.1016/j.nonrwa.2012.04.016.

[5]

J. Liang, G. M. N'Guérékata, T. J. Xiao and J. Zhang, Some properties of pseudo almost automorphic functions and applications to abstract differential equations,, Nonlinear Anal., 70 (2009), 2731. doi: 10.1016/j.na.2008.03.061.

[6]

T. J. Xiao, X. X. Zhu and J. Liang, Pseudo almost automorphic mild solutions to nonautomous differential equations and applications,, Nonlinear Anal., 70 (2009), 4079. doi: 10.1016/j.na.2008.08.018.

[7]

C. Lizama, Regularzed solutions for abstract Volterra equations,, J. Math. Anal. Appl., 243 (2000), 278. doi: 10.1006/jmaa.1999.6668.

[8]

J. Prüss, "Evolutionary Integral Equations and Applications,", Monographs Math., 87 (1993). doi: 10.1007/978-3-0348-8570-6.

[9]

G. Gripenberg, S. -O.Londen and O. Staffans, Volterra integral and functional equations,, in, 34 (1990). doi: 10.1017/CBO9780511662805.

[10]

C. Lizama, On approximation and representation of $k$-regularized resolvent families,, Integral Equations Operator Theory, 41 (2001), 223. doi: 10.1007/BF01295306.

[11]

C. Lizama and J. Sánchez, On perturbation of $k$-regularized resolvent families,, Taiwanese J. Math., 7 (2003), 217.

[12]

S. Y. Shaw and J. C. Chen, Asymptotic behavior of $(a,k)$-regularized families at zero,, Taiwanese J. Math., 10 (2006), 531.

[13]

G. M. N'Guérékata, "Topics in Almost Automorphy,", Springer, (2005).

[14]

T. Diagana, Weighted pseudo almost periodic functions and applications,, C. R. Acad. Sci. Paris, 343 (2006), 643. doi: 10.1016/j.crma.2006.10.008.

[15]

J. Blot, G. M. Mophou, G. M. N'Guérékata and D. Pennequin, Weighted pseudo almost automorphic functions and applications to abstract differential equations,, Nonlinear Anal., 71 (2009), 903. doi: 10.1016/j.na.2008.10.113.

[16]

G. M. Mophou, Weighted pseudo almost automorphic mild solutions to semilinear fractional differential equations,, Appl. Math. Comp., 217 (2011), 7579. doi: 10.1016/j.amc.2011.02.048.

[17]

T. Diagana, G. M. Mophou and G. M. N'Guérékata, Existence of weighted pseudo almost periodic solutions to some classes of differential equations with $S^p$-weighted pseudo almost periodic coefficients,, Nonlinear Anal., 72 (2010), 430. doi: 10.1016/j.na.2009.06.077.

[18]

G. M. N'Guérékata and A. Pankov, Stepanov-like almost automorphic functions and monotone evolution equations,, Nonlinear Anal., 69 (2008), 2658. doi: 10.1016/j.na.2007.02.012.

[19]

H. Lee and H. Alkahby, Stepanov-like almost automorphic solutions of nonautonomous semilinear evolution equations with delay,, Nonlinear Anal., 69 (2008), 2158. doi: 10.1016/j.na.2007.07.053.

[20]

A. Granas and J. Dugundji, "Fixed Point Theory,", Springer-Velag, (2003).

show all references

References:
[1]

C. Cuevas and C. Lizama, Almost automorphic solutions to integral equations on the line,, Semigroup Forum, 79 (2009), 461. doi: 10.1007/s00233-009-9154-0.

[2]

H. R. Henríquez and C. Lizama, Compact almost automorphic solutions to integral equations with infinite delay,, Nonlinear Anal., 71 (2009), 6029. doi: 10.1016/j.na.2009.05.042.

[3]

Z. H. Zhao, Y. K. Chang and G. M. N'Guérékata, Pseudo-almost automorphic mild solutions to semilinear integral equations in a Banach space,, Nonlinear Anal., 74 (2011), 2887. doi: 10.1016/j.na.2011.01.018.

[4]

R. Zhang, Y. K. Chang and G. M. N'Guérékata, New composition theorems of Stepanov-like weighted pseudo almost automorphic functions and applications to nonautonomous evolution equations,, Nonlinear Anal. RWA, 13 (2012), 2866. doi: 10.1016/j.nonrwa.2012.04.016.

[5]

J. Liang, G. M. N'Guérékata, T. J. Xiao and J. Zhang, Some properties of pseudo almost automorphic functions and applications to abstract differential equations,, Nonlinear Anal., 70 (2009), 2731. doi: 10.1016/j.na.2008.03.061.

[6]

T. J. Xiao, X. X. Zhu and J. Liang, Pseudo almost automorphic mild solutions to nonautomous differential equations and applications,, Nonlinear Anal., 70 (2009), 4079. doi: 10.1016/j.na.2008.08.018.

[7]

C. Lizama, Regularzed solutions for abstract Volterra equations,, J. Math. Anal. Appl., 243 (2000), 278. doi: 10.1006/jmaa.1999.6668.

[8]

J. Prüss, "Evolutionary Integral Equations and Applications,", Monographs Math., 87 (1993). doi: 10.1007/978-3-0348-8570-6.

[9]

G. Gripenberg, S. -O.Londen and O. Staffans, Volterra integral and functional equations,, in, 34 (1990). doi: 10.1017/CBO9780511662805.

[10]

C. Lizama, On approximation and representation of $k$-regularized resolvent families,, Integral Equations Operator Theory, 41 (2001), 223. doi: 10.1007/BF01295306.

[11]

C. Lizama and J. Sánchez, On perturbation of $k$-regularized resolvent families,, Taiwanese J. Math., 7 (2003), 217.

[12]

S. Y. Shaw and J. C. Chen, Asymptotic behavior of $(a,k)$-regularized families at zero,, Taiwanese J. Math., 10 (2006), 531.

[13]

G. M. N'Guérékata, "Topics in Almost Automorphy,", Springer, (2005).

[14]

T. Diagana, Weighted pseudo almost periodic functions and applications,, C. R. Acad. Sci. Paris, 343 (2006), 643. doi: 10.1016/j.crma.2006.10.008.

[15]

J. Blot, G. M. Mophou, G. M. N'Guérékata and D. Pennequin, Weighted pseudo almost automorphic functions and applications to abstract differential equations,, Nonlinear Anal., 71 (2009), 903. doi: 10.1016/j.na.2008.10.113.

[16]

G. M. Mophou, Weighted pseudo almost automorphic mild solutions to semilinear fractional differential equations,, Appl. Math. Comp., 217 (2011), 7579. doi: 10.1016/j.amc.2011.02.048.

[17]

T. Diagana, G. M. Mophou and G. M. N'Guérékata, Existence of weighted pseudo almost periodic solutions to some classes of differential equations with $S^p$-weighted pseudo almost periodic coefficients,, Nonlinear Anal., 72 (2010), 430. doi: 10.1016/j.na.2009.06.077.

[18]

G. M. N'Guérékata and A. Pankov, Stepanov-like almost automorphic functions and monotone evolution equations,, Nonlinear Anal., 69 (2008), 2658. doi: 10.1016/j.na.2007.02.012.

[19]

H. Lee and H. Alkahby, Stepanov-like almost automorphic solutions of nonautonomous semilinear evolution equations with delay,, Nonlinear Anal., 69 (2008), 2158. doi: 10.1016/j.na.2007.07.053.

[20]

A. Granas and J. Dugundji, "Fixed Point Theory,", Springer-Velag, (2003).

[1]

Gaston Mandata N ' Guerekata. Remarks on almost automorphic differential equations. Conference Publications, 2001, 2001 (Special) : 276-279. doi: 10.3934/proc.2001.2001.276

[2]

Tomás Caraballo, David Cheban. Almost periodic and almost automorphic solutions of linear differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1857-1882. doi: 10.3934/dcds.2013.33.1857

[3]

Hailong Zhu, Jifeng Chu, Weinian Zhang. Mean-square almost automorphic solutions for stochastic differential equations with hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1935-1953. doi: 10.3934/dcds.2018078

[4]

Aníbal Coronel, Christopher Maulén, Manuel Pinto, Daniel Sepúlveda. Almost automorphic delayed differential equations and Lasota-Wazewska model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1959-1977. doi: 10.3934/dcds.2017083

[5]

Mingchun Wang, Jiankai Xu, Huoxiong Wu. On Positive solutions of integral equations with the weighted Bessel potentials. Communications on Pure & Applied Analysis, 2019, 18 (2) : 625-641. doi: 10.3934/cpaa.2019031

[6]

Bixiang Wang. Stochastic bifurcation of pathwise random almost periodic and almost automorphic solutions for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3745-3769. doi: 10.3934/dcds.2015.35.3745

[7]

Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164

[8]

Yongkun Li, Pan Wang. Almost periodic solution for neutral functional dynamic equations with Stepanov-almost periodic terms on time scales. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 463-473. doi: 10.3934/dcdss.2017022

[9]

Parin Chaipunya, Poom Kumam. Fixed point theorems for cyclic operators with application in Fractional integral inclusions with delays. Conference Publications, 2015, 2015 (special) : 248-257. doi: 10.3934/proc.2015.0248

[10]

Douglas A. Leonard. A weighted module view of integral closures of affine domains of type I. Advances in Mathematics of Communications, 2009, 3 (1) : 1-11. doi: 10.3934/amc.2009.3.1

[11]

Jiankai Xu, Song Jiang, Huoxiong Wu. Some properties of positive solutions for an integral system with the double weighted Riesz potentials. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2117-2134. doi: 10.3934/cpaa.2016030

[12]

Claudia Anedda, Giovanni Porru. Boundary estimates for solutions of weighted semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3801-3817. doi: 10.3934/dcds.2012.32.3801

[13]

Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space, II: Weighted Sobolev metrics and almost local metrics. Journal of Geometric Mechanics, 2012, 4 (4) : 365-383. doi: 10.3934/jgm.2012.4.365

[14]

Yuval Z. Flicker. Automorphic forms on PGSp(2). Electronic Research Announcements, 2004, 10: 39-50.

[15]

Yingshu Lü, Zhongxue Lü. Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3791-3810. doi: 10.3934/dcds.2016.36.3791

[16]

Yang Cao, Jingxue Yin. Small perturbation of a semilinear pseudo-parabolic equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 631-642. doi: 10.3934/dcds.2016.36.631

[17]

Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051

[18]

Marta García-Huidobro, Raul Manásevich, J. R. Ward. Vector p-Laplacian like operators, pseudo-eigenvalues, and bifurcation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 299-321. doi: 10.3934/dcds.2007.19.299

[19]

Jana Majerová. Correlation integral and determinism for a family of $2^\infty$ maps. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5067-5096. doi: 10.3934/dcds.2016020

[20]

Augusto Visintin. Weak structural stability of pseudo-monotone equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2763-2796. doi: 10.3934/dcds.2015.35.2763

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]