November  2013, 33(11&12): 5507-5519. doi: 10.3934/dcds.2013.33.5507

Positive solutions of nonlinear equations via comparison with linear operators

1. 

School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QW, United Kingdom

Received  June 2011 Revised  March 2012 Published  May 2013

We discuss positive solutions of problems that arise from nonlinear boundary value problems in the particular situation where the nonlinear term $f(t,u)$ depends explicitly on $t$ and this dependence is crucial. We give new fixed point index results using comparisons with linear operators. These prove new results on existence of positive solutions under some conditions which can be sharp.
Citation: Jeffrey R. L. Webb. Positive solutions of nonlinear equations via comparison with linear operators. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5507-5519. doi: 10.3934/dcds.2013.33.5507
References:
[1]

K. Deimling, "Nonlinear Functional Analysis,", Springer-Verlag, (1985). Google Scholar

[2]

L. Erbe, Eigenvalue criteria for existence of positive solutions to nonlinear boundary value problems,, Math. Comput. Modelling, 32 (2000), 529. doi: 10.1016/S0895-7177(00)00150-3. Google Scholar

[3]

J. R. Graef and L. Kong, Existence results for nonlinear periodic boundary-value problems,, Proc. Edinb. Math. Soc., 52 (2009), 79. doi: 10.1017/S0013091507000788. Google Scholar

[4]

D. Guo and V. Lakshmikantham, "Nonlinear Problems in Abstract Cones,", Academic Press, (1988). Google Scholar

[5]

M. S. Keener and C. C. Travis, Positive cones and focal points for a class of $n$th order differential equations,, Trans. Amer. Math. Soc., 237 (1978), 331. doi: 10.2307/1997625. Google Scholar

[6]

L. Kong and Q. Kong, Higher order boundary value problems with nonhomogeneous boundary conditions,, Nonlinear Anal., 72 (2010), 240. doi: 10.1016/j.na.2009.06.050. Google Scholar

[7]

L. Kong and J. S. W. Wong, Positive solutions for higher order multi-point boundary value problems with nonhomogeneous boundary conditions,, J. Math. Anal. Appl., 367 (2010), 588. doi: 10.1016/j.jmaa.2010.01.063. Google Scholar

[8]

M. A. Krasnosel'skiĭ, "Positive Solutions of Operator Equations,", P. Noordhoff Ltd. Groningen, (1964). Google Scholar

[9]

M. A. Krasnosel'skiĭ and P. P. Zabreĭko, "Geometrical Methods of Nonlinear Analysis,", Springer, (1984). doi: 10.1007/978-3-642-69409-7. Google Scholar

[10]

K. Q. Lan, Multiple positive solutions of semilinear differential equations with singularities,, J. Lond. Math. Soc. (2), 63 (2001), 690. doi: 10.1112/S002461070100206X. Google Scholar

[11]

K. Q. Lan, Multiple positive solutions of Hammerstein integral equations with singularities,, Differential Equations Dynam. Syst., 8 (2000), 175. Google Scholar

[12]

K. Q. Lan, Multiple positive solutions of conjugate boundary value problems with singularities,, Appl. Math. Comput., 147 (2004), 461. doi: 10.1016/S0096-3003(02)00739-7. Google Scholar

[13]

K. Q. Lan, Multiple positive solutions of Hammerstein integral equations and applications to periodic boundary value problems,, Appl. Math. Comput., 154 (2004), 531. doi: 10.1016/S0096-3003(03)00733-1. Google Scholar

[14]

K. Q. Lan, Multiple eigenvalues for singular Hammerstein integral equations with applications to boundary value problems,, J. Comput. Appl. Math., 189 (2006), 109. doi: 10.1016/j.cam.2005.03.029. Google Scholar

[15]

K. Q. Lan, Eigenvalues of semi-positone Hammerstein integral equations and applications to boundary value problems,, Nonlinear Anal., 71 (2009), 5979. doi: 10.1016/j.na.2009.05.022. Google Scholar

[16]

K. Q. Lan and J. R. L. Webb, Positive solutions of semilinear differential equations with singularities,, J. Differential Equations, 148 (1998), 407. doi: 10.1006/jdeq.1998.3475. Google Scholar

[17]

B. Liu, L. Liu and Y. Wu, Positive solutions for a singular second-order three-point boundary value problem,, Appl. Math. Comput., 196 (2008), 532. doi: 10.1016/j.amc.2007.06.013. Google Scholar

[18]

R. Ma and L. Ren, Positive solutions for nonlinear $m$-point boundary value problems of Dirichlet type via fixed-point index theory,, Appl. Math. Lett., 16 (2003), 863. doi: 10.1016/S0893-9659(03)90009-7. Google Scholar

[19]

R. H. Martin, "Nonlinear Operators and Differential Equations in Banach Spaces,", Wiley, (1976). Google Scholar

[20]

R. D. Nussbaum, Periodic solutions of some nonlinear integral equations,, Dynamical systems, (1977), 221. Google Scholar

[21]

Y. Sun, L. Liu, J. Zhang and R. P. Agarwal, Positive solutions of singular three-point boundary value problems for second-order differential equations,, J. Comput. Appl. Math., 230 (2009), 738. doi: 10.1016/j.cam.2009.01.003. Google Scholar

[22]

J. R. L. Webb, Solutions of nonlinear equations in cones and positive linear operators,, J. Lond. Math. Soc. (2), 82 (2010), 420. doi: 10.1112/jlms/jdq037. Google Scholar

[23]

J. R. L. Webb, A class of positive linear operators and applications to nonlinear boundary value problems,, Topol. Methods Nonlinear Anal., 39 (2012), 221. Google Scholar

[24]

J. R. L. Webb and K. Q. Lan, Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary value problems of local and nonlocal type,, Topol. Methods Nonlinear Anal., 27 (2006), 91. Google Scholar

[25]

J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems involving integral conditions,, NoDEA Nonlinear Differential Equations Appl., 15 (2008), 45. doi: 10.1007/s00030-007-4067-7. Google Scholar

[26]

J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems: A unified approach,, J. Lond. Math. Soc. (2), 74 (2006), 673. doi: 10.1112/S0024610706023179. Google Scholar

[27]

J. R. L. Webb and G. Infante, Nonlocal boundary value problems of arbitrary order,, J. Lond. Math. Soc. (2), 79 (2009), 238. doi: 10.1112/jlms/jdn066. Google Scholar

[28]

J. R. L. Webb, G. Infante and D. Franco, Positive solutions of nonlinear fourth-order boundary-value problems with local and non-local boundary conditions,, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 427. doi: 10.1017/S0308210506001041. Google Scholar

[29]

G. Zhang and J. Sun, Positive solutions of $m$-point boundary value problems,, J. Math. Anal. Appl., 291 (2004), 406. doi: 10.1016/j.jmaa.2003.11.034. Google Scholar

show all references

References:
[1]

K. Deimling, "Nonlinear Functional Analysis,", Springer-Verlag, (1985). Google Scholar

[2]

L. Erbe, Eigenvalue criteria for existence of positive solutions to nonlinear boundary value problems,, Math. Comput. Modelling, 32 (2000), 529. doi: 10.1016/S0895-7177(00)00150-3. Google Scholar

[3]

J. R. Graef and L. Kong, Existence results for nonlinear periodic boundary-value problems,, Proc. Edinb. Math. Soc., 52 (2009), 79. doi: 10.1017/S0013091507000788. Google Scholar

[4]

D. Guo and V. Lakshmikantham, "Nonlinear Problems in Abstract Cones,", Academic Press, (1988). Google Scholar

[5]

M. S. Keener and C. C. Travis, Positive cones and focal points for a class of $n$th order differential equations,, Trans. Amer. Math. Soc., 237 (1978), 331. doi: 10.2307/1997625. Google Scholar

[6]

L. Kong and Q. Kong, Higher order boundary value problems with nonhomogeneous boundary conditions,, Nonlinear Anal., 72 (2010), 240. doi: 10.1016/j.na.2009.06.050. Google Scholar

[7]

L. Kong and J. S. W. Wong, Positive solutions for higher order multi-point boundary value problems with nonhomogeneous boundary conditions,, J. Math. Anal. Appl., 367 (2010), 588. doi: 10.1016/j.jmaa.2010.01.063. Google Scholar

[8]

M. A. Krasnosel'skiĭ, "Positive Solutions of Operator Equations,", P. Noordhoff Ltd. Groningen, (1964). Google Scholar

[9]

M. A. Krasnosel'skiĭ and P. P. Zabreĭko, "Geometrical Methods of Nonlinear Analysis,", Springer, (1984). doi: 10.1007/978-3-642-69409-7. Google Scholar

[10]

K. Q. Lan, Multiple positive solutions of semilinear differential equations with singularities,, J. Lond. Math. Soc. (2), 63 (2001), 690. doi: 10.1112/S002461070100206X. Google Scholar

[11]

K. Q. Lan, Multiple positive solutions of Hammerstein integral equations with singularities,, Differential Equations Dynam. Syst., 8 (2000), 175. Google Scholar

[12]

K. Q. Lan, Multiple positive solutions of conjugate boundary value problems with singularities,, Appl. Math. Comput., 147 (2004), 461. doi: 10.1016/S0096-3003(02)00739-7. Google Scholar

[13]

K. Q. Lan, Multiple positive solutions of Hammerstein integral equations and applications to periodic boundary value problems,, Appl. Math. Comput., 154 (2004), 531. doi: 10.1016/S0096-3003(03)00733-1. Google Scholar

[14]

K. Q. Lan, Multiple eigenvalues for singular Hammerstein integral equations with applications to boundary value problems,, J. Comput. Appl. Math., 189 (2006), 109. doi: 10.1016/j.cam.2005.03.029. Google Scholar

[15]

K. Q. Lan, Eigenvalues of semi-positone Hammerstein integral equations and applications to boundary value problems,, Nonlinear Anal., 71 (2009), 5979. doi: 10.1016/j.na.2009.05.022. Google Scholar

[16]

K. Q. Lan and J. R. L. Webb, Positive solutions of semilinear differential equations with singularities,, J. Differential Equations, 148 (1998), 407. doi: 10.1006/jdeq.1998.3475. Google Scholar

[17]

B. Liu, L. Liu and Y. Wu, Positive solutions for a singular second-order three-point boundary value problem,, Appl. Math. Comput., 196 (2008), 532. doi: 10.1016/j.amc.2007.06.013. Google Scholar

[18]

R. Ma and L. Ren, Positive solutions for nonlinear $m$-point boundary value problems of Dirichlet type via fixed-point index theory,, Appl. Math. Lett., 16 (2003), 863. doi: 10.1016/S0893-9659(03)90009-7. Google Scholar

[19]

R. H. Martin, "Nonlinear Operators and Differential Equations in Banach Spaces,", Wiley, (1976). Google Scholar

[20]

R. D. Nussbaum, Periodic solutions of some nonlinear integral equations,, Dynamical systems, (1977), 221. Google Scholar

[21]

Y. Sun, L. Liu, J. Zhang and R. P. Agarwal, Positive solutions of singular three-point boundary value problems for second-order differential equations,, J. Comput. Appl. Math., 230 (2009), 738. doi: 10.1016/j.cam.2009.01.003. Google Scholar

[22]

J. R. L. Webb, Solutions of nonlinear equations in cones and positive linear operators,, J. Lond. Math. Soc. (2), 82 (2010), 420. doi: 10.1112/jlms/jdq037. Google Scholar

[23]

J. R. L. Webb, A class of positive linear operators and applications to nonlinear boundary value problems,, Topol. Methods Nonlinear Anal., 39 (2012), 221. Google Scholar

[24]

J. R. L. Webb and K. Q. Lan, Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary value problems of local and nonlocal type,, Topol. Methods Nonlinear Anal., 27 (2006), 91. Google Scholar

[25]

J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems involving integral conditions,, NoDEA Nonlinear Differential Equations Appl., 15 (2008), 45. doi: 10.1007/s00030-007-4067-7. Google Scholar

[26]

J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems: A unified approach,, J. Lond. Math. Soc. (2), 74 (2006), 673. doi: 10.1112/S0024610706023179. Google Scholar

[27]

J. R. L. Webb and G. Infante, Nonlocal boundary value problems of arbitrary order,, J. Lond. Math. Soc. (2), 79 (2009), 238. doi: 10.1112/jlms/jdn066. Google Scholar

[28]

J. R. L. Webb, G. Infante and D. Franco, Positive solutions of nonlinear fourth-order boundary-value problems with local and non-local boundary conditions,, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 427. doi: 10.1017/S0308210506001041. Google Scholar

[29]

G. Zhang and J. Sun, Positive solutions of $m$-point boundary value problems,, J. Math. Anal. Appl., 291 (2004), 406. doi: 10.1016/j.jmaa.2003.11.034. Google Scholar

[1]

G. Infante. Positive solutions of nonlocal boundary value problems with singularities. Conference Publications, 2009, 2009 (Special) : 377-384. doi: 10.3934/proc.2009.2009.377

[2]

John R. Graef, Lingju Kong, Qingkai Kong, Min Wang. Positive solutions of nonlocal fractional boundary value problems. Conference Publications, 2013, 2013 (special) : 283-290. doi: 10.3934/proc.2013.2013.283

[3]

Gennaro Infante. Positive solutions of differential equations with nonlinear boundary conditions. Conference Publications, 2003, 2003 (Special) : 432-438. doi: 10.3934/proc.2003.2003.432

[4]

Wenying Feng. Solutions and positive solutions for some three-point boundary value problems. Conference Publications, 2003, 2003 (Special) : 263-272. doi: 10.3934/proc.2003.2003.263

[5]

J. R. L. Webb. Remarks on positive solutions of some three point boundary value problems. Conference Publications, 2003, 2003 (Special) : 905-915. doi: 10.3934/proc.2003.2003.905

[6]

John R. Graef, Bo Yang. Multiple positive solutions to a three point third order boundary value problem. Conference Publications, 2005, 2005 (Special) : 337-344. doi: 10.3934/proc.2005.2005.337

[7]

John R. Graef, Johnny Henderson, Bo Yang. Positive solutions to a fourth order three point boundary value problem. Conference Publications, 2009, 2009 (Special) : 269-275. doi: 10.3934/proc.2009.2009.269

[8]

John R. Graef, Bo Yang. Positive solutions of a third order nonlocal boundary value problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 89-97. doi: 10.3934/dcdss.2008.1.89

[9]

Gennaro Infante. Eigenvalues and positive solutions of odes involving integral boundary conditions. Conference Publications, 2005, 2005 (Special) : 436-442. doi: 10.3934/proc.2005.2005.436

[10]

Dagny Butler, Eunkyung Ko, Eun Kyoung Lee, R. Shivaji. Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2713-2731. doi: 10.3934/cpaa.2014.13.2713

[11]

Abdelkader Boucherif. Positive Solutions of second order differential equations with integral boundary conditions. Conference Publications, 2007, 2007 (Special) : 155-159. doi: 10.3934/proc.2007.2007.155

[12]

Gabriella Di Blasio. Ultraparabolic equations with nonlocal delayed boundary conditions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4945-4965. doi: 10.3934/dcds.2013.33.4945

[13]

Santiago Cano-Casanova. Bifurcation to positive solutions in BVPs of logistic type with nonlinear indefinite mixed boundary conditions. Conference Publications, 2013, 2013 (special) : 95-104. doi: 10.3934/proc.2013.2013.95

[14]

Eun Kyoung Lee, R. Shivaji, Inbo Sim, Byungjae Son. Analysis of positive solutions for a class of semipositone p-Laplacian problems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1139-1154. doi: 10.3934/cpaa.2019055

[15]

Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775

[16]

Nicholas Long. Fixed point shifts of inert involutions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297

[17]

Alexander Quaas, Andrei Rodríguez. Analysis of the attainment of boundary conditions for a nonlocal diffusive Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5221-5243. doi: 10.3934/dcds.2018231

[18]

Bhargav Kumar Kakumani, Suman Kumar Tumuluri. Asymptotic behavior of the solution of a diffusion equation with nonlocal boundary conditions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 407-419. doi: 10.3934/dcdsb.2017019

[19]

Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2001-2029. doi: 10.3934/cpaa.2013.12.2001

[20]

Boumediene Abdellaoui, Ahmed Attar, Abdelrazek Dieb, Ireneo Peral. Attainability of the fractional hardy constant with nonlocal mixed boundary conditions: Applications. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 5963-5991. doi: 10.3934/dcds.2018131

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]