• Previous Article
    Maximal regularity and global existence of solutions to a quasilinear thermoelastic plate system
  • DCDS Home
  • This Issue
  • Next Article
    On the nonexistence of positive solutions to doubly nonlinear equations for Baouendi-Grushin operators
November  2013, 33(11&12): 5177-5187. doi: 10.3934/dcds.2013.33.5177

Coagulation and fragmentation processes with evolving size and shape profiles: A semigroup approach

1. 

Department of Mathematics and Statistics, University of Strathclyde, Glasgow, G1 1XH, United Kingdom, United Kingdom, United Kingdom

Received  October 2011 Revised  August 2012 Published  May 2013

We investigate a class of bivariate coagulation-fragmentation equations. These equations describe the evolution of a system of particles that are characterised not only by a discrete size variable but also by a shape variable which can be either discrete or continuous. Existence and uniqueness of strong solutions to the associated abstract Cauchy problems are established by using the theory of substochastic semigroups of operators.
Citation: Wilson Lamb, Adam McBride, Louise Smith. Coagulation and fragmentation processes with evolving size and shape profiles: A semigroup approach. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5177-5187. doi: 10.3934/dcds.2013.33.5177
References:
[1]

J. Banasiak and L. Arlotti, "Positive Perturbations of Semigroups with Applications,", Springer, (2006). Google Scholar

[2]

J. Banasiak, Global classical solutions of coagulation-fragmentation equations with unbounded coagulation rates,, Nonlinear Analysis : Real World Applications, 13 (2012), 91. doi: 10.1016/j.nonrwa.2011.07.016. Google Scholar

[3]

J. Blum, Dust agglomeration,, Advances in Physics, 55 (2006), 881. Google Scholar

[4]

J. Carr, Asymptotic behaviour of solutions to the coagulation-fragmentation equations I. The strong fragmentation case,, Proc. Roy. Soc. Edinburgh, 121 (1992), 231. doi: 10.1017/S0308210500027888. Google Scholar

[5]

F. P. da Costa, Existence and uniqueness of density conserving solutions to the coagulation-fragmentation equations with strong fragmentation,, J. Math. Anal. Appl., 192 (1995), 892. doi: 10.1006/jmaa.1995.1210. Google Scholar

[6]

J. M. Fernández-Díaz and G. J. Gómez-García, Exact solution of a coagulation equation with a product kernel in the multicomponent case,, Physica D, 239 (2010), 279. doi: 10.1016/j.physd.2009.11.010. Google Scholar

[7]

F. Gruy, Population balance for aggregation coupled with morphology changes,, Colloids and Surfaces A : Physicochemical and Engineering Aspects, 374 (2011), 69. doi: 10.1016/j.colsurfa.2010.11.010. Google Scholar

[8]

M. Kostoglou, A. G. Konstandopoulos and S. K. Friedlander, Bivariate population dynamics simulation of fractal aerosol aggregate coagulation and restructuring,, Aerosol Science, 37 (2006), 1102. doi: 10.1016/j.jaerosci.2005.11.009. Google Scholar

[9]

A. C. McBride, A. L. Smith and W. Lamb, Strongly differentiable solutions of the discrete coagulation-fragmentation equation,, Physica D, 239 (2010), 1436. doi: 10.1016/j.physd.2009.03.013. Google Scholar

[10]

A. L. Smith, W. Lamb, M. Langer and A. C. McBride, Discrete fragmentation with mass loss,, J. Evol. Equ., 12 (2012), 181. doi: 10.1007/s00028-011-0129-8. Google Scholar

[11]

A. L. Smith, "Mathematical Analysis of Discrete Coagulation-Fragmentation Equations,", Ph.D. Thesis, (2011). Google Scholar

[12]

R. D. Vigil and R. M. Ziff, On the scaling theory of two-component aggregation,, Chemical Eng. Sci., 53 (1998), 1725. doi: 10.1016/S0009-2509(98)00016-5. Google Scholar

[13]

J. A. D. Wattis, Exact solutions for cluster-growth kinetics with evolving size and shape profiles,, J. Phys. A : Math. Gen., 39 (2006), 7283. doi: 10.1088/0305-4470/39/23/007. Google Scholar

show all references

References:
[1]

J. Banasiak and L. Arlotti, "Positive Perturbations of Semigroups with Applications,", Springer, (2006). Google Scholar

[2]

J. Banasiak, Global classical solutions of coagulation-fragmentation equations with unbounded coagulation rates,, Nonlinear Analysis : Real World Applications, 13 (2012), 91. doi: 10.1016/j.nonrwa.2011.07.016. Google Scholar

[3]

J. Blum, Dust agglomeration,, Advances in Physics, 55 (2006), 881. Google Scholar

[4]

J. Carr, Asymptotic behaviour of solutions to the coagulation-fragmentation equations I. The strong fragmentation case,, Proc. Roy. Soc. Edinburgh, 121 (1992), 231. doi: 10.1017/S0308210500027888. Google Scholar

[5]

F. P. da Costa, Existence and uniqueness of density conserving solutions to the coagulation-fragmentation equations with strong fragmentation,, J. Math. Anal. Appl., 192 (1995), 892. doi: 10.1006/jmaa.1995.1210. Google Scholar

[6]

J. M. Fernández-Díaz and G. J. Gómez-García, Exact solution of a coagulation equation with a product kernel in the multicomponent case,, Physica D, 239 (2010), 279. doi: 10.1016/j.physd.2009.11.010. Google Scholar

[7]

F. Gruy, Population balance for aggregation coupled with morphology changes,, Colloids and Surfaces A : Physicochemical and Engineering Aspects, 374 (2011), 69. doi: 10.1016/j.colsurfa.2010.11.010. Google Scholar

[8]

M. Kostoglou, A. G. Konstandopoulos and S. K. Friedlander, Bivariate population dynamics simulation of fractal aerosol aggregate coagulation and restructuring,, Aerosol Science, 37 (2006), 1102. doi: 10.1016/j.jaerosci.2005.11.009. Google Scholar

[9]

A. C. McBride, A. L. Smith and W. Lamb, Strongly differentiable solutions of the discrete coagulation-fragmentation equation,, Physica D, 239 (2010), 1436. doi: 10.1016/j.physd.2009.03.013. Google Scholar

[10]

A. L. Smith, W. Lamb, M. Langer and A. C. McBride, Discrete fragmentation with mass loss,, J. Evol. Equ., 12 (2012), 181. doi: 10.1007/s00028-011-0129-8. Google Scholar

[11]

A. L. Smith, "Mathematical Analysis of Discrete Coagulation-Fragmentation Equations,", Ph.D. Thesis, (2011). Google Scholar

[12]

R. D. Vigil and R. M. Ziff, On the scaling theory of two-component aggregation,, Chemical Eng. Sci., 53 (1998), 1725. doi: 10.1016/S0009-2509(98)00016-5. Google Scholar

[13]

J. A. D. Wattis, Exact solutions for cluster-growth kinetics with evolving size and shape profiles,, J. Phys. A : Math. Gen., 39 (2006), 7283. doi: 10.1088/0305-4470/39/23/007. Google Scholar

[1]

Jacek Banasiak. Transport processes with coagulation and strong fragmentation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 445-472. doi: 10.3934/dcdsb.2012.17.445

[2]

Maxime Breden. Applications of improved duality lemmas to the discrete coagulation-fragmentation equations with diffusion. Kinetic & Related Models, 2018, 11 (2) : 279-301. doi: 10.3934/krm.2018014

[3]

Pierre Degond, Maximilian Engel. Numerical approximation of a coagulation-fragmentation model for animal group size statistics. Networks & Heterogeneous Media, 2017, 12 (2) : 217-243. doi: 10.3934/nhm.2017009

[4]

Miguel A. Herrero, Marianito R. Rodrigo. Remarks on accessible steady states for some coagulation-fragmentation systems. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 541-552. doi: 10.3934/dcds.2007.17.541

[5]

Jacek Banasiak, Luke O. Joel, Sergey Shindin. The discrete unbounded coagulation-fragmentation equation with growth, decay and sedimentation. Kinetic & Related Models, 2019, 12 (5) : 1069-1092. doi: 10.3934/krm.2019040

[6]

Jacek Banasiak, Wilson Lamb. Coagulation, fragmentation and growth processes in a size structured population. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 563-585. doi: 10.3934/dcdsb.2009.11.563

[7]

Prasanta Kumar Barik, Ankik Kumar Giri. A note on mass-conserving solutions to the coagulation-fragmentation equation by using non-conservative approximation. Kinetic & Related Models, 2018, 11 (5) : 1125-1138. doi: 10.3934/krm.2018043

[8]

Jacek Banasiak, Mustapha Mokhtar-Kharroubi. Universality of dishonesty of substochastic semigroups: Shattering fragmentation and explosive birth-and-death processes. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 529-542. doi: 10.3934/dcdsb.2005.5.529

[9]

Ankik Kumar Giri. On the uniqueness for coagulation and multiple fragmentation equation. Kinetic & Related Models, 2013, 6 (3) : 589-599. doi: 10.3934/krm.2013.6.589

[10]

Jacek Banasiak. Blow-up of solutions to some coagulation and fragmentation equations with growth. Conference Publications, 2011, 2011 (Special) : 126-134. doi: 10.3934/proc.2011.2011.126

[11]

Jacek Banasiak, Wilson Lamb. The discrete fragmentation equation: Semigroups, compactness and asynchronous exponential growth. Kinetic & Related Models, 2012, 5 (2) : 223-236. doi: 10.3934/krm.2012.5.223

[12]

Prasanta Kumar Barik. Existence of mass-conserving weak solutions to the singular coagulation equation with multiple fragmentation. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020012

[13]

Angela A. Albanese, Xavier Barrachina, Elisabetta M. Mangino, Alfredo Peris. Distributional chaos for strongly continuous semigroups of operators. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2069-2082. doi: 10.3934/cpaa.2013.12.2069

[14]

V. Pata, Sergey Zelik. A result on the existence of global attractors for semigroups of closed operators. Communications on Pure & Applied Analysis, 2007, 6 (2) : 481-486. doi: 10.3934/cpaa.2007.6.481

[15]

Bertrand Lods, Mustapha Mokhtar-Kharroubi, Mohammed Sbihi. Spectral properties of general advection operators and weighted translation semigroups. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1469-1492. doi: 10.3934/cpaa.2009.8.1469

[16]

Francesco Altomare, Mirella Cappelletti Montano, Vita Leonessa. On the positive semigroups generated by Fleming-Viot type differential operators. Communications on Pure & Applied Analysis, 2019, 18 (1) : 323-340. doi: 10.3934/cpaa.2019017

[17]

Teemu Lukkari, Mikko Parviainen. Stability of degenerate parabolic Cauchy problems. Communications on Pure & Applied Analysis, 2015, 14 (1) : 201-216. doi: 10.3934/cpaa.2015.14.201

[18]

Jitraj Saha, Nilima Das, Jitendra Kumar, Andreas Bück. Numerical solutions for multidimensional fragmentation problems using finite volume methods. Kinetic & Related Models, 2019, 12 (1) : 79-103. doi: 10.3934/krm.2019004

[19]

C. T. Cremins. Existence theorems for weakly inward semilinear operators. Conference Publications, 2003, 2003 (Special) : 200-205. doi: 10.3934/proc.2003.2003.200

[20]

Jin Liang, James H. Liu, Ti-Jun Xiao. Nonlocal Cauchy problems for nonautonomous evolution equations. Communications on Pure & Applied Analysis, 2006, 5 (3) : 529-535. doi: 10.3934/cpaa.2006.5.529

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]