November  2013, 33(11&12): 4923-4944. doi: 10.3934/dcds.2013.33.4923

On a Dirichlet problem in bounded domains with singular nonlinearity

1. 

Dipartimento di Matematica, Università di Bari, via Orabona 4, 70125 Bari, Italy

2. 

Department of Mathematics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy

Received  May 2012 Published  May 2013

In this paper we prove the existence and regularity of positive solutions of the homogeneous Dirichlet problem \begin{equation*} -Δ u=g(x,u)     in     \Omega,         u=0    on     ∂ \Omega, \end{equation*} where $g(x,u)$ can be singular as $u\rightarrow0^+$ and $0\le g(x,u)\le\frac{\varphi_0(x)}{u^p}$ or $0\le$ $ g(x,u)$ $\le$ $\varphi_0(x)(1+\frac{1}{u^p})$, with $\varphi_0 \in L^m(\Omega), 1 ≤ m.$ There are no assumptions on the monotonicity of $g(x,\cdot)$ and the existence of super- or sub-solutions.
Citation: Giuseppe Maria Coclite, Mario Michele Coclite. On a Dirichlet problem in bounded domains with singular nonlinearity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4923-4944. doi: 10.3934/dcds.2013.33.4923
References:
[1]

L. Boccardo and L. Orsina, Semilinear elliptic equations with singular nonlinearities,, Calc. Var. Partial Differential Equations, 37 (2010), 363. doi: 10.1007/s00526-009-0266-x. Google Scholar

[2]

H. Brezis and X. Cabré, Some simple nonlinear PDE's without solutions,, Boll. Un. Mat. Ital., 1 (1998), 223. Google Scholar

[3]

M. M. Coclite, On a singular nonlinear dirichlet problem - II,, Boll. Un. Mat. Ital., 5 (1991), 955. Google Scholar

[4]

M. M. Coclite, On a singular nonlinear Dirichlet problem - III,, Nonlinear Anal., 21 (1993), 547. doi: 10.1016/0362-546X(93)90010-P. Google Scholar

[5]

G. M. Coclite and M. M. Coclite, Elliptic perturbations for Hammerstein equations with singular nonlinear term,, Electron. J. Diff. Eqns., 2006 (2006). Google Scholar

[6]

M. G. Crandal, P. H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity,, Comm. Partial Differential Equations, 2 (1977), 193. doi: 10.1080/03605307708820029. Google Scholar

[7]

G. Stampacchia, Le problème de Dirichlet poue les équations elliptiques du second order à coefficientes discontinus,, Ann. Inst. Fourier (Grenoble), 15 (1965), 189. doi: 10.5802/aif.204. Google Scholar

[8]

Z. Zhao, Green function for Schrödinger operator and conditioned Feynman-Kac gauge,, J. Math. Anal. Appl., 116 (1986), 309. doi: 10.1016/S0022-247X(86)80001-4. Google Scholar

show all references

References:
[1]

L. Boccardo and L. Orsina, Semilinear elliptic equations with singular nonlinearities,, Calc. Var. Partial Differential Equations, 37 (2010), 363. doi: 10.1007/s00526-009-0266-x. Google Scholar

[2]

H. Brezis and X. Cabré, Some simple nonlinear PDE's without solutions,, Boll. Un. Mat. Ital., 1 (1998), 223. Google Scholar

[3]

M. M. Coclite, On a singular nonlinear dirichlet problem - II,, Boll. Un. Mat. Ital., 5 (1991), 955. Google Scholar

[4]

M. M. Coclite, On a singular nonlinear Dirichlet problem - III,, Nonlinear Anal., 21 (1993), 547. doi: 10.1016/0362-546X(93)90010-P. Google Scholar

[5]

G. M. Coclite and M. M. Coclite, Elliptic perturbations for Hammerstein equations with singular nonlinear term,, Electron. J. Diff. Eqns., 2006 (2006). Google Scholar

[6]

M. G. Crandal, P. H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity,, Comm. Partial Differential Equations, 2 (1977), 193. doi: 10.1080/03605307708820029. Google Scholar

[7]

G. Stampacchia, Le problème de Dirichlet poue les équations elliptiques du second order à coefficientes discontinus,, Ann. Inst. Fourier (Grenoble), 15 (1965), 189. doi: 10.5802/aif.204. Google Scholar

[8]

Z. Zhao, Green function for Schrödinger operator and conditioned Feynman-Kac gauge,, J. Math. Anal. Appl., 116 (1986), 309. doi: 10.1016/S0022-247X(86)80001-4. Google Scholar

[1]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Existence and applications to the level-set approach. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1047-1069. doi: 10.3934/dcds.2008.21.1047

[2]

Daniel Franco, Donal O'Regan. Existence of solutions to second order problems with nonlinear boundary conditions. Conference Publications, 2003, 2003 (Special) : 273-280. doi: 10.3934/proc.2003.2003.273

[3]

Alfonso Castro, Jorge Cossio, Carlos Vélez. Existence and qualitative properties of solutions for nonlinear Dirichlet problems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 123-140. doi: 10.3934/dcds.2013.33.123

[4]

Gennaro Infante. Positive solutions of differential equations with nonlinear boundary conditions. Conference Publications, 2003, 2003 (Special) : 432-438. doi: 10.3934/proc.2003.2003.432

[5]

Eun Kyoung Lee, R. Shivaji, Inbo Sim, Byungjae Son. Analysis of positive solutions for a class of semipositone p-Laplacian problems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1139-1154. doi: 10.3934/cpaa.2019055

[6]

John V. Baxley, Philip T. Carroll. Nonlinear boundary value problems with multiple positive solutions. Conference Publications, 2003, 2003 (Special) : 83-90. doi: 10.3934/proc.2003.2003.83

[7]

Michael E. Filippakis, Nikolaos S. Papageorgiou. Existence and multiplicity of positive solutions for nonlinear boundary value problems driven by the scalar $p$-Laplacian. Communications on Pure & Applied Analysis, 2004, 3 (4) : 729-756. doi: 10.3934/cpaa.2004.3.729

[8]

Johnny Henderson, Rodica Luca. Existence of positive solutions for a system of nonlinear second-order integral boundary value problems. Conference Publications, 2015, 2015 (special) : 596-604. doi: 10.3934/proc.2015.0596

[9]

Hongjing Pan, Ruixiang Xing. On the existence of positive solutions for some nonlinear boundary value problems and applications to MEMS models. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3627-3682. doi: 10.3934/dcds.2015.35.3627

[10]

M. Gaudenzi, P. Habets, F. Zanolin. Positive solutions of superlinear boundary value problems with singular indefinite weight. Communications on Pure & Applied Analysis, 2003, 2 (3) : 411-423. doi: 10.3934/cpaa.2003.2.411

[11]

José M. Arrieta, Simone M. Bruschi. Very rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a non uniformly Lipschitz deformation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 327-351. doi: 10.3934/dcdsb.2010.14.327

[12]

Dagny Butler, Eunkyung Ko, Eun Kyoung Lee, R. Shivaji. Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2713-2731. doi: 10.3934/cpaa.2014.13.2713

[13]

Françoise Demengel, O. Goubet. Existence of boundary blow up solutions for singular or degenerate fully nonlinear equations. Communications on Pure & Applied Analysis, 2013, 12 (2) : 621-645. doi: 10.3934/cpaa.2013.12.621

[14]

Eric R. Kaufmann. Existence and nonexistence of positive solutions for a nonlinear fractional boundary value problem. Conference Publications, 2009, 2009 (Special) : 416-423. doi: 10.3934/proc.2009.2009.416

[15]

Nicola Abatangelo, Serena Dipierro, Mouhamed Moustapha Fall, Sven Jarohs, Alberto Saldaña. Positive powers of the Laplacian in the half-space under Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1205-1235. doi: 10.3934/dcds.2019052

[16]

Gabriele Bonanno, Pasquale Candito, Roberto Livrea, Nikolaos S. Papageorgiou. Existence, nonexistence and uniqueness of positive solutions for nonlinear eigenvalue problems. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1169-1188. doi: 10.3934/cpaa.2017057

[17]

Roberta Filippucci, Chiara Lini. Existence of solutions for quasilinear Dirichlet problems with gradient terms. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 267-286. doi: 10.3934/dcdss.2019019

[18]

Carmen Calvo-Jurado, Juan Casado-Díaz, Manuel Luna-Laynez. Parabolic problems with varying operators and Dirichlet and Neumann boundary conditions on varying sets. Conference Publications, 2007, 2007 (Special) : 181-190. doi: 10.3934/proc.2007.2007.181

[19]

Shouchuan Hu, Nikolaos S. Papageorgiou. Solutions of nonlinear nonhomogeneous Neumann and Dirichlet problems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2889-2922. doi: 10.3934/cpaa.2013.12.2889

[20]

Santiago Cano-Casanova. Bifurcation to positive solutions in BVPs of logistic type with nonlinear indefinite mixed boundary conditions. Conference Publications, 2013, 2013 (special) : 95-104. doi: 10.3934/proc.2013.2013.95

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (23)
  • HTML views (0)
  • Cited by (4)

[Back to Top]