• Previous Article
    Expansion growth, entropy and invariant measures of distal groups and pseudogroups of homeo- and diffeomorphisms
  • DCDS Home
  • This Issue
  • Next Article
    Ray and heteroclinic solutions of Hamiltonian systems with 2 degrees of freedom
October  2013, 33(10): 4743-4768. doi: 10.3934/dcds.2013.33.4743

Zero-electron-mass limit of Euler-Poisson equations

1. 

Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106

2. 

Department of Mathematics, Zhejiang University, Hangzhou 310027

Received  October 2012 Revised  January 2013 Published  April 2013

We study the limit of vanishing ratio of the electron mass to the ion mass (zero-electron-mass limit) in the scaled Euler-Poisson equations. As the first step of this justification, we construct the uniform global classical solutions in critical Besov spaces with the aid of ``Shizuta-Kawashima" skew-symmetry. Then we establish frequency-localization estimates of Strichartz-type for the equation of acoustics according to the semigroup formulation. Finally, it is shown that the uniform classical solutions converge towards that of the incompressible Euler equations (for ill-preparedinitial data) in a refined way as the scaled electron-mass tends to zero. In comparison with the classical zero-mach-number limit in [7,23], we obtain different dispersive estimates due to the coupled electric field.
Citation: Jiang Xu, Ting Zhang. Zero-electron-mass limit of Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4743-4768. doi: 10.3934/dcds.2013.33.4743
References:
[1]

T. Alazard, Low mach number limit of the full Navier-Stokes equations,, Arch. Ration. Mech. Anal., 180 (2006), 1. doi: 10.1007/s00205-005-0393-2. Google Scholar

[2]

G. Alì, Global existence of smooth solutions of the N-dimensional Euler-Possion model,, SIAM J. Math. Anal., 35 (2003), 389. doi: 10.1137/S0036141001393225. Google Scholar

[3]

G. Alì and L. Chen, The zero-electron-mass limit in the Euler-Poisson system for both well- and ill-prepared initial data,, Nonlinearity, 24 (2011), 2745. doi: 10.1088/0951-7715/24/10/005. Google Scholar

[4]

G. Alì, L. Chen, A. Jüngel and Y. J. Peng, The zero-electron-mass limit in the hydrodynamic model for plasmas,, Nonlinear Anal. TMA, 72 (2010), 4415. doi: 10.1016/j.na.2010.02.016. Google Scholar

[5]

J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, "Mathematical Geophysics. An Introduction to Rotating Fluids and the Navier-Stokes Equations,", Oxford Lecture Series in Mathematics and its Applications, (2006). Google Scholar

[6]

L. Chen, X. Q. Chen and C. L. Zhang, Vanishing electron mass limit in the bipolar Euler-Poisson system,, Nonlinear Anal. RWA, 12 (2011), 1002. doi: 10.1016/j.nonrwa.2010.08.023. Google Scholar

[7]

R. Danchin, Zero Mach number limit in critical spaces for compressible Navier-Stokes equations,, Ann. Sci. École Norm. Sup. (4), 35 (2002), 27. doi: 10.1016/S0012-9593(01)01085-0. Google Scholar

[8]

P. Degond and P. A. Markowich, On a one-dimensional steady-state hydrodynamic model for semiconductors,, Appl. Math. Lett., 3 (1990), 25. doi: 10.1016/0893-9659(90)90130-4. Google Scholar

[9]

D. Y. Fang, J. Xu and T. Zhang, Global exponential stability of classical solutions to the hydrodynamic model for semiconductors,, Math. Models Methods Appl. Sci., 17 (2007), 1507. doi: 10.1142/S0218202507002364. Google Scholar

[10]

T. Goudon, A. Jüngel and Y. J. Peng, Zero-mass-electrons limits in hydrodynamic models for plasmas,, Appl. Math. Lett., 12 (1999), 75. doi: 10.1016/S0893-9659(99)00038-5. Google Scholar

[11]

Y. Guo and W. Strauss, Stability of semiconductor states with Insulating and contact boundary conditions,, Arch. Rational Mech. Anal., 179 (2005), 1. doi: 10.1007/s00205-005-0369-2. Google Scholar

[12]

D. W. Hewett, Low-frequency electro-magnetic (Darwin) applications in plasma simulation,, Comput. Phys. Commun., 84 (1994), 243. Google Scholar

[13]

L. Hsiao, S. Jiang and P. Zhang, Global existence and exponential stablity of smooth solutions to a full hydrodynamic model to semiconductors,, Monatshefte f$\ddotu$r Mathematik, 136 (2002), 269. doi: 10.1007/s00605-002-0485-0. Google Scholar

[14]

D. Iftimie, The resolution of the Navier-Stokes equations in anisotropic spaces,, Rev. Mat. Iberoamericana, 15 (1999), 1. doi: 10.4171/RMI/248. Google Scholar

[15]

A. Jüngel and Y. J. Peng, A hierarchy of hydrodynamic models for plasmas: Zero-electron-mass limits in the drift-diffusion equations,, Ann. Inst. H. Poincaré Anal. NonLinéaire, 17 (2000), 83. doi: 10.1016/S0294-1449(99)00101-8. Google Scholar

[16]

F. Kazeminezhad, J. M. Dawson, J. N. Leboeuf, R. Sydora and D. Holland, A vlasov particle ion zero mass electron model for plasma simulations,, J. Comput. Phys., 102 (1992), 277. doi: 10.1016/0021-9991(92)90372-6. Google Scholar

[17]

S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids,, Comm. Pure Appl. Math., 34 (1981), 481. doi: 10.1002/cpa.3160340405. Google Scholar

[18]

S. Klainerman and A. Majda, Compressible and incompressible fluids,, Comm. Pure Appl. Math., 35 (1982), 629. doi: 10.1002/cpa.3160350503. Google Scholar

[19]

S. Kawashima and W. A. Yong, Dissipative structure and entropy for hyperbolic systems of balance laws,, Arch. Ration. Mech. Anal., 174 (2004), 345. doi: 10.1007/s00205-004-0330-9. Google Scholar

[20]

C. Lattanzio and P. Marcati, The relaxation to the drift-diffusion system for the 3-D isentropic Euler-Poisson model for semiconductors,, Discrete Contin. Dyn. Syst.-A, 5 (1999), 449. doi: 10.3934/dcds.1999.5.449. Google Scholar

[21]

P. Marcati and R. Natalini, Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equations,, Arch. Ration. Mech. Anal., 129 (1995), 129. doi: 10.1007/BF00379918. Google Scholar

[22]

P. A. Markowich, C. Ringhofer and C. Schmeiser, "Semiconductor Equations,", Springer-Verlag, (1990). doi: 10.1007/978-3-7091-6961-2. Google Scholar

[23]

G. Métivier and S. Schochet, The incompressible limit of the Non-Isentropic euler equations,, Arch. Ration. Mech. Anal., 158 (2001), 61. doi: 10.1007/PL00004241. Google Scholar

[24]

S. Wang, Quasineutral limit of Euler-Poisson system with and without viscosity,, Comm. PDE, 29 (2004), 419. doi: 10.1081/PDE-120030403. Google Scholar

[25]

J. Xu and W.-A. Yong, Relaxation-time limits of non-isentropic hydrodynamic models for semiconductors,, J. Diff. Equs., 247 (2009), 1777. doi: 10.1016/j.jde.2009.06.018. Google Scholar

[26]

J. Xu and W.-A. Yong, Zero-electron-mass limit of hydrodynamic models for plasmas,, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 431. doi: 10.1017/S0308210510000119. Google Scholar

[27]

W.-A. Yong, Diffusive relaxation limit of multi-dimensional isentropic hydrodynamic models for semiconductor,, SIAM J. Appl. Math., 64 (2004), 1737. doi: 10.1137/S0036139903427404. Google Scholar

[28]

W.-A. Yong, Entropy and global existence for hyperbolic balance laws,, Arch. Ration. Mech. Anal., 172 (2004), 247. doi: 10.1007/s00205-003-0304-3. Google Scholar

show all references

References:
[1]

T. Alazard, Low mach number limit of the full Navier-Stokes equations,, Arch. Ration. Mech. Anal., 180 (2006), 1. doi: 10.1007/s00205-005-0393-2. Google Scholar

[2]

G. Alì, Global existence of smooth solutions of the N-dimensional Euler-Possion model,, SIAM J. Math. Anal., 35 (2003), 389. doi: 10.1137/S0036141001393225. Google Scholar

[3]

G. Alì and L. Chen, The zero-electron-mass limit in the Euler-Poisson system for both well- and ill-prepared initial data,, Nonlinearity, 24 (2011), 2745. doi: 10.1088/0951-7715/24/10/005. Google Scholar

[4]

G. Alì, L. Chen, A. Jüngel and Y. J. Peng, The zero-electron-mass limit in the hydrodynamic model for plasmas,, Nonlinear Anal. TMA, 72 (2010), 4415. doi: 10.1016/j.na.2010.02.016. Google Scholar

[5]

J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, "Mathematical Geophysics. An Introduction to Rotating Fluids and the Navier-Stokes Equations,", Oxford Lecture Series in Mathematics and its Applications, (2006). Google Scholar

[6]

L. Chen, X. Q. Chen and C. L. Zhang, Vanishing electron mass limit in the bipolar Euler-Poisson system,, Nonlinear Anal. RWA, 12 (2011), 1002. doi: 10.1016/j.nonrwa.2010.08.023. Google Scholar

[7]

R. Danchin, Zero Mach number limit in critical spaces for compressible Navier-Stokes equations,, Ann. Sci. École Norm. Sup. (4), 35 (2002), 27. doi: 10.1016/S0012-9593(01)01085-0. Google Scholar

[8]

P. Degond and P. A. Markowich, On a one-dimensional steady-state hydrodynamic model for semiconductors,, Appl. Math. Lett., 3 (1990), 25. doi: 10.1016/0893-9659(90)90130-4. Google Scholar

[9]

D. Y. Fang, J. Xu and T. Zhang, Global exponential stability of classical solutions to the hydrodynamic model for semiconductors,, Math. Models Methods Appl. Sci., 17 (2007), 1507. doi: 10.1142/S0218202507002364. Google Scholar

[10]

T. Goudon, A. Jüngel and Y. J. Peng, Zero-mass-electrons limits in hydrodynamic models for plasmas,, Appl. Math. Lett., 12 (1999), 75. doi: 10.1016/S0893-9659(99)00038-5. Google Scholar

[11]

Y. Guo and W. Strauss, Stability of semiconductor states with Insulating and contact boundary conditions,, Arch. Rational Mech. Anal., 179 (2005), 1. doi: 10.1007/s00205-005-0369-2. Google Scholar

[12]

D. W. Hewett, Low-frequency electro-magnetic (Darwin) applications in plasma simulation,, Comput. Phys. Commun., 84 (1994), 243. Google Scholar

[13]

L. Hsiao, S. Jiang and P. Zhang, Global existence and exponential stablity of smooth solutions to a full hydrodynamic model to semiconductors,, Monatshefte f$\ddotu$r Mathematik, 136 (2002), 269. doi: 10.1007/s00605-002-0485-0. Google Scholar

[14]

D. Iftimie, The resolution of the Navier-Stokes equations in anisotropic spaces,, Rev. Mat. Iberoamericana, 15 (1999), 1. doi: 10.4171/RMI/248. Google Scholar

[15]

A. Jüngel and Y. J. Peng, A hierarchy of hydrodynamic models for plasmas: Zero-electron-mass limits in the drift-diffusion equations,, Ann. Inst. H. Poincaré Anal. NonLinéaire, 17 (2000), 83. doi: 10.1016/S0294-1449(99)00101-8. Google Scholar

[16]

F. Kazeminezhad, J. M. Dawson, J. N. Leboeuf, R. Sydora and D. Holland, A vlasov particle ion zero mass electron model for plasma simulations,, J. Comput. Phys., 102 (1992), 277. doi: 10.1016/0021-9991(92)90372-6. Google Scholar

[17]

S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids,, Comm. Pure Appl. Math., 34 (1981), 481. doi: 10.1002/cpa.3160340405. Google Scholar

[18]

S. Klainerman and A. Majda, Compressible and incompressible fluids,, Comm. Pure Appl. Math., 35 (1982), 629. doi: 10.1002/cpa.3160350503. Google Scholar

[19]

S. Kawashima and W. A. Yong, Dissipative structure and entropy for hyperbolic systems of balance laws,, Arch. Ration. Mech. Anal., 174 (2004), 345. doi: 10.1007/s00205-004-0330-9. Google Scholar

[20]

C. Lattanzio and P. Marcati, The relaxation to the drift-diffusion system for the 3-D isentropic Euler-Poisson model for semiconductors,, Discrete Contin. Dyn. Syst.-A, 5 (1999), 449. doi: 10.3934/dcds.1999.5.449. Google Scholar

[21]

P. Marcati and R. Natalini, Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equations,, Arch. Ration. Mech. Anal., 129 (1995), 129. doi: 10.1007/BF00379918. Google Scholar

[22]

P. A. Markowich, C. Ringhofer and C. Schmeiser, "Semiconductor Equations,", Springer-Verlag, (1990). doi: 10.1007/978-3-7091-6961-2. Google Scholar

[23]

G. Métivier and S. Schochet, The incompressible limit of the Non-Isentropic euler equations,, Arch. Ration. Mech. Anal., 158 (2001), 61. doi: 10.1007/PL00004241. Google Scholar

[24]

S. Wang, Quasineutral limit of Euler-Poisson system with and without viscosity,, Comm. PDE, 29 (2004), 419. doi: 10.1081/PDE-120030403. Google Scholar

[25]

J. Xu and W.-A. Yong, Relaxation-time limits of non-isentropic hydrodynamic models for semiconductors,, J. Diff. Equs., 247 (2009), 1777. doi: 10.1016/j.jde.2009.06.018. Google Scholar

[26]

J. Xu and W.-A. Yong, Zero-electron-mass limit of hydrodynamic models for plasmas,, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 431. doi: 10.1017/S0308210510000119. Google Scholar

[27]

W.-A. Yong, Diffusive relaxation limit of multi-dimensional isentropic hydrodynamic models for semiconductor,, SIAM J. Appl. Math., 64 (2004), 1737. doi: 10.1137/S0036139903427404. Google Scholar

[28]

W.-A. Yong, Entropy and global existence for hyperbolic balance laws,, Arch. Ration. Mech. Anal., 172 (2004), 247. doi: 10.1007/s00205-003-0304-3. Google Scholar

[1]

A. Alexandrou Himonas, Gerard Misiołek, Feride Tiǧlay. On unique continuation for the modified Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 515-529. doi: 10.3934/dcds.2007.19.515

[2]

Yongcai Geng. Singularity formation for relativistic Euler and Euler-Poisson equations with repulsive force. Communications on Pure & Applied Analysis, 2015, 14 (2) : 549-564. doi: 10.3934/cpaa.2015.14.549

[3]

Hong Cai, Zhong Tan. Stability of stationary solutions to the compressible bipolar Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4677-4696. doi: 10.3934/dcds.2017201

[4]

La-Su Mai, Kaijun Zhang. Asymptotic stability of steady state solutions for the relativistic Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 981-1004. doi: 10.3934/dcds.2016.36.981

[5]

Manwai Yuen. Cylindrical blowup solutions to the isothermal Euler-Poisson equations. Conference Publications, 2011, 2011 (Special) : 1448-1456. doi: 10.3934/proc.2011.2011.1448

[6]

Haigang Li, Jiguang Bao. Euler-Poisson equations related to general compressible rotating fluids. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1085-1096. doi: 10.3934/dcds.2011.29.1085

[7]

Sasho Popov, Jean-Marie Strelcyn. The Euler-Poisson equations: An elementary approach to integrability conditions. Journal of Geometric Mechanics, 2018, 10 (3) : 293-329. doi: 10.3934/jgm.2018011

[8]

Houyu Jia, Xiaofeng Liu. Local existence and blowup criterion of the Lagrangian averaged Euler equations in Besov spaces. Communications on Pure & Applied Analysis, 2008, 7 (4) : 845-852. doi: 10.3934/cpaa.2008.7.845

[9]

Minghua Yang, Zunwei Fu, Jinyi Sun. Global solutions to Chemotaxis-Navier-Stokes equations in critical Besov spaces. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3427-3460. doi: 10.3934/dcdsb.2018284

[10]

Minghua Yang, Jinyi Sun. Gevrey regularity and existence of Navier-Stokes-Nernst-Planck-Poisson system in critical Besov spaces. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1617-1639. doi: 10.3934/cpaa.2017078

[11]

Masahiro Suzuki. Asymptotic stability of stationary solutions to the Euler-Poisson equations arising in plasma physics. Kinetic & Related Models, 2011, 4 (2) : 569-588. doi: 10.3934/krm.2011.4.569

[12]

Zhigang Wu, Weike Wang. Pointwise estimates of solutions for the Euler-Poisson equations with damping in multi-dimensions. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 1101-1117. doi: 10.3934/dcds.2010.26.1101

[13]

Xingwen Hao, Yachun Li, Zejun Wang. Non-relativistic global limits to the three dimensional relativistic euler equations with spherical symmetry. Communications on Pure & Applied Analysis, 2010, 9 (2) : 365-386. doi: 10.3934/cpaa.2010.9.365

[14]

Qunyi Bie, Haibo Cui, Qiru Wang, Zheng-An Yao. Incompressible limit for the compressible flow of liquid crystals in $ L^p$ type critical Besov spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2879-2910. doi: 10.3934/dcds.2018124

[15]

Xueke Pu. Quasineutral limit of the Euler-Poisson system under strong magnetic fields. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2095-2111. doi: 10.3934/dcdss.2016086

[16]

Shu Wang, Chundi Liu. Boundary Layer Problem and Quasineutral Limit of Compressible Euler-Poisson System. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2177-2199. doi: 10.3934/cpaa.2017108

[17]

Myoungjean Bae, Yong Park. Radial transonic shock solutions of Euler-Poisson system in convergent nozzles. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 773-791. doi: 10.3934/dcdss.2018049

[18]

Hi Jun Choe, Bataa Lkhagvasuren, Minsuk Yang. Wellposedness of the Keller-Segel Navier-Stokes equations in the critical Besov spaces. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2453-2464. doi: 10.3934/cpaa.2015.14.2453

[19]

Xiaoping Zhai, Yongsheng Li, Wei Yan. Global well-posedness for the 3-D incompressible MHD equations in the critical Besov spaces. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1865-1884. doi: 10.3934/cpaa.2015.14.1865

[20]

Baoxiang Wang. E-Besov spaces and dissipative equations. Communications on Pure & Applied Analysis, 2004, 3 (4) : 883-919. doi: 10.3934/cpaa.2004.3.883

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]