
Previous Article
Zeta functions and topological entropy of periodic nonautonomous dynamical systems
 DCDS Home
 This Issue

Next Article
Pinching conditions, linearization and regularity of Axiom A flows
Browniantime Brownian motion SIEs on $\mathbb{R}_{+}$ × $\mathbb{R}^d$: Ultra regular direct and latticelimits solutions and fourth order SPDEs links
1.  Department of Mathematical Sciences, Kent State University, Kent, Ohio 44242, United States 
References:
[1] 
H. Allouba and E. Nane, Interacting timefractional and $\Delta^\nu$ PDEs systems via Browniantime and InversestableLévytime Brownian sheets,, 29 pages. Stoch. Dyn., (). doi: 10.1142/S0219493712500128. Google Scholar 
[2] 
H. Allouba, From Browniantime Brownian sheet to a fourth order and a KuramotoSivashinskyvariant interacting PDEs systems,, Stoch. Anal. Appl., 29 (2011), 933. Google Scholar 
[3] 
H. Allouba, A Browniantime excursion into fourthorder PDEs, linearized KuramotoSivashinsky, and BTPSPDEs on $\mathbb R_{+}$ × $\mathbb R^d$,, Stoch. Dyn., 6 (2006), 521. Google Scholar 
[4] 
H. Allouba, A linearized KuramotoSivashinsky PDE via an imaginaryBrowniantimeBrownianangle process,, C. R. Math. Acad. Sci. Paris, 336 (2003), 309. Google Scholar 
[5] 
H. Allouba, LKuramotoSivashinsky SPDEs on $\mathbb R_{+}$ × $\mathbb R^d$ via the imaginaryBrowniantimeBrownianangle representation,, In final preparation., (). Google Scholar 
[6] 
H. Allouba and J. Duan, SwiftHohenberg SPDEs drivenon $\mathbb R_{+}$ × $\mathbb R^d$ and their attractors,, In preparation., (). Google Scholar 
[7] 
H. Allouba and J. A. Langa, Nonlinear KuramotoSivashinsky type SPDEs on $\mathbb R_{+}$ × $\mathbb R^d$ and their attractors,, In preparation., (). Google Scholar 
[8] 
H. Allouba and Y. Xiao, BTBM SIEs on $\mathbb R_{+}$ × $\mathbb R^d$: modulus of continuity, hitting probabilities, Hausdorff dimensions, and ddependent variation,, In preparation., (). Google Scholar 
[9] 
H. Allouba, SDDEs limits solutions to sublinear reactiondiffusion SPDEs,, Electron. J. Differential Equations, (2003). Google Scholar 
[10] 
H. Allouba, Browniantime processes: the PDE connection II and the corresponding FeynmanKac formula,, Trans. Amer. Math. Soc., 354 (2002), 4627. Google Scholar 
[11] 
H. Allouba and W. Zheng, Browniantime processes: the PDE connection and the halfderivative generator,, Ann. Probab., 29 (2001), 1780. Google Scholar 
[12] 
H. Allouba, SPDEs law equivalence and the compact support property: applications to the AllenCahn SPDE,, C. R. Acad. Sci. Paris S. I Math, 331 (2000), 245. Google Scholar 
[13] 
H. Allouba, Uniqueness in law for the AllenCahn SPDE via change of measure,, C. R. Acad. Sci. Paris S. I Math, 330 (2000), 371. Google Scholar 
[14] 
H. Allouba, Different types of SPDEs in the eyes of Girsanov's theorem,, Stochastic Anal. Appl., 16 (1998), 787. Google Scholar 
[15] 
H. Allouba, A nonnonstandard proof of Reimers' existence result for heat SPDEs,, J. Appl. Math. Stochastic Anal., 11 (1998), 29. Google Scholar 
[16] 
R. Bass, "Probabilistic Techniques in Analysis,", Springer, (1995). Google Scholar 
[17] 
R. Bass, "Diffusions and Elliptic Operators,", Springer, (1997). Google Scholar 
[18] 
R. Bass and H. Tang, The martingale problem for a class of stablelike processes,, Stochastic Process. Appl., 119 (2009), 1144. Google Scholar 
[19] 
P. Carr and L. Cousot, A PDE approach to jumpdiffusions,, Quant. Finance, 11 (2011), 33. Google Scholar 
[20] 
R. Dalang, Extending martingale measure stochastic integrals with applications to spatially homogeneous SPDEs,, Electron. J. Probab, 4 (1999), 1. doi: 10.1214/EJP.v443. Google Scholar 
[21] 
R. Dalang and M. SanzSolé, Regularity of the sample paths of a class of secondorder spde's,, J. Funct. Anal., 227 (2005), 304. Google Scholar 
[22] 
R. Dalang and M. SanzSolé, HölderSobolev regularity of the solution to the stochastic wave equation in dimension 3,, Mem. Amer. Math. Soc., 199 (2009). Google Scholar 
[23] 
G. Da Prato and A. Debussche, Stochastic CahnHilliard equation,, Nonlinear Anal., 26 (1996), 241. Google Scholar 
[24] 
R. DeBlassie, Iterated Brownian motion in an open set,, Ann. Appl. Probab., 14 (2004), 1529. Google Scholar 
[25] 
J. Doob, "Stochastic Processes,", John Wiley and Sons, (1953). Google Scholar 
[26] 
J. Duan and W. Wei, "Effective Dynamics of Stochasticpartial Differential Euations,", To appear., (). Google Scholar 
[27] 
M. Foondun, and D. Khoshnevisan and E. Nualart, A localtime correspondence for stochastic partial differential equations,, Trans. Amer. Math. Soc., 363 (2011), 2481. Google Scholar 
[28] 
N. L. Garcia and T. G. Kurtz, Spatial birth and death processes as solutions of stochastic equations,, ALEA Lat. Am. J. Probab. Math. Stat., 1 (2006), 281. Google Scholar 
[29] 
N. Ikeda and S. Watanabe, "Stochastic Differential Equations and Diffusions,", NorthHolland Publishing Company, (1989). Google Scholar 
[30] 
I. Karatzas and S. Shreve, "Brownian Motion and Stochastic Calculus,", SpringerVerlag, (1988). doi: 10.1007/9781468403022. Google Scholar 
[31] 
T. Kurtz, Particle representations for measurevalued population processes with spatially varying birth rates,, Stochastic models (Ottawa, 26 (2000), 299. Google Scholar 
[32] 
J. Le Gall, A pathvalued Markov process and its connections with partial differential equations,, First European Congress of Mathematics, 120 (1994), 185. Google Scholar 
[33] 
M. M. Meerschaert, E. Nane and P. Vellaisamy, Fractional Cauchy problems on bounded domains,, Ann. Probab., 37 (2009), 979. doi: 10.1214/08AOP426. Google Scholar 
[34] 
E. Nane, Stochastic solutions of a class of Higher order Cauchy problems in $\mathbb R^d$,, Stoch. Dyn., 10 (2010), 341. doi: 10.1142/S021949371000298X. Google Scholar 
[35] 
M. Reimers, One dimensional stochastic partial differential equations and the branching measure diffusion,, Probab. Theory Relat. Fields, 81 (1989), 319. doi: 10.1007/BF00340057. Google Scholar 
[36] 
R. Sowers, Shorttime geometry of random heat kernels, (English summary), Mem. Amer. Math. Soc., 132 (1998). Google Scholar 
[37] 
R. Sowers, Multidimensional reactiondiffusion equations with white noise boundary perturbations,, Ann. Probab., 22 (1994), 2071. Google Scholar 
[38] 
D. Stroock and S. Varadhan, "Multidimensional Diffusion Processes,", Reprint of the 1997 edition. Classics in Mathematics. SpringerVerlag, (1997), 978. Google Scholar 
[39] 
D. Stroock and W. Zheng, Markov chain approximations to symmetric diffusions,, Ann. Inst. H. Poincare Probab. Statist, 33 (1997), 619. Google Scholar 
[40] 
R. Temam, "InfiniteDimensional Dynamical Systems in Mechanics and Physics,", Second edition. Applied Mathematical Sciences, (1997), 0. Google Scholar 
[41] 
J. B. Walsh, "An Introduction to Stochastic Partial Differential Equations,", École d'été de Probabilités de SaintFlour XIV. Lecture Notes in Math. 1180. Springer, (1180). Google Scholar 
[42] 
Y. Xiao, Local times and related properties of multidimensional iterated Brownian motion,, J. Theoret. Probab., 11 (1998), 383. Google Scholar 
show all references
References:
[1] 
H. Allouba and E. Nane, Interacting timefractional and $\Delta^\nu$ PDEs systems via Browniantime and InversestableLévytime Brownian sheets,, 29 pages. Stoch. Dyn., (). doi: 10.1142/S0219493712500128. Google Scholar 
[2] 
H. Allouba, From Browniantime Brownian sheet to a fourth order and a KuramotoSivashinskyvariant interacting PDEs systems,, Stoch. Anal. Appl., 29 (2011), 933. Google Scholar 
[3] 
H. Allouba, A Browniantime excursion into fourthorder PDEs, linearized KuramotoSivashinsky, and BTPSPDEs on $\mathbb R_{+}$ × $\mathbb R^d$,, Stoch. Dyn., 6 (2006), 521. Google Scholar 
[4] 
H. Allouba, A linearized KuramotoSivashinsky PDE via an imaginaryBrowniantimeBrownianangle process,, C. R. Math. Acad. Sci. Paris, 336 (2003), 309. Google Scholar 
[5] 
H. Allouba, LKuramotoSivashinsky SPDEs on $\mathbb R_{+}$ × $\mathbb R^d$ via the imaginaryBrowniantimeBrownianangle representation,, In final preparation., (). Google Scholar 
[6] 
H. Allouba and J. Duan, SwiftHohenberg SPDEs drivenon $\mathbb R_{+}$ × $\mathbb R^d$ and their attractors,, In preparation., (). Google Scholar 
[7] 
H. Allouba and J. A. Langa, Nonlinear KuramotoSivashinsky type SPDEs on $\mathbb R_{+}$ × $\mathbb R^d$ and their attractors,, In preparation., (). Google Scholar 
[8] 
H. Allouba and Y. Xiao, BTBM SIEs on $\mathbb R_{+}$ × $\mathbb R^d$: modulus of continuity, hitting probabilities, Hausdorff dimensions, and ddependent variation,, In preparation., (). Google Scholar 
[9] 
H. Allouba, SDDEs limits solutions to sublinear reactiondiffusion SPDEs,, Electron. J. Differential Equations, (2003). Google Scholar 
[10] 
H. Allouba, Browniantime processes: the PDE connection II and the corresponding FeynmanKac formula,, Trans. Amer. Math. Soc., 354 (2002), 4627. Google Scholar 
[11] 
H. Allouba and W. Zheng, Browniantime processes: the PDE connection and the halfderivative generator,, Ann. Probab., 29 (2001), 1780. Google Scholar 
[12] 
H. Allouba, SPDEs law equivalence and the compact support property: applications to the AllenCahn SPDE,, C. R. Acad. Sci. Paris S. I Math, 331 (2000), 245. Google Scholar 
[13] 
H. Allouba, Uniqueness in law for the AllenCahn SPDE via change of measure,, C. R. Acad. Sci. Paris S. I Math, 330 (2000), 371. Google Scholar 
[14] 
H. Allouba, Different types of SPDEs in the eyes of Girsanov's theorem,, Stochastic Anal. Appl., 16 (1998), 787. Google Scholar 
[15] 
H. Allouba, A nonnonstandard proof of Reimers' existence result for heat SPDEs,, J. Appl. Math. Stochastic Anal., 11 (1998), 29. Google Scholar 
[16] 
R. Bass, "Probabilistic Techniques in Analysis,", Springer, (1995). Google Scholar 
[17] 
R. Bass, "Diffusions and Elliptic Operators,", Springer, (1997). Google Scholar 
[18] 
R. Bass and H. Tang, The martingale problem for a class of stablelike processes,, Stochastic Process. Appl., 119 (2009), 1144. Google Scholar 
[19] 
P. Carr and L. Cousot, A PDE approach to jumpdiffusions,, Quant. Finance, 11 (2011), 33. Google Scholar 
[20] 
R. Dalang, Extending martingale measure stochastic integrals with applications to spatially homogeneous SPDEs,, Electron. J. Probab, 4 (1999), 1. doi: 10.1214/EJP.v443. Google Scholar 
[21] 
R. Dalang and M. SanzSolé, Regularity of the sample paths of a class of secondorder spde's,, J. Funct. Anal., 227 (2005), 304. Google Scholar 
[22] 
R. Dalang and M. SanzSolé, HölderSobolev regularity of the solution to the stochastic wave equation in dimension 3,, Mem. Amer. Math. Soc., 199 (2009). Google Scholar 
[23] 
G. Da Prato and A. Debussche, Stochastic CahnHilliard equation,, Nonlinear Anal., 26 (1996), 241. Google Scholar 
[24] 
R. DeBlassie, Iterated Brownian motion in an open set,, Ann. Appl. Probab., 14 (2004), 1529. Google Scholar 
[25] 
J. Doob, "Stochastic Processes,", John Wiley and Sons, (1953). Google Scholar 
[26] 
J. Duan and W. Wei, "Effective Dynamics of Stochasticpartial Differential Euations,", To appear., (). Google Scholar 
[27] 
M. Foondun, and D. Khoshnevisan and E. Nualart, A localtime correspondence for stochastic partial differential equations,, Trans. Amer. Math. Soc., 363 (2011), 2481. Google Scholar 
[28] 
N. L. Garcia and T. G. Kurtz, Spatial birth and death processes as solutions of stochastic equations,, ALEA Lat. Am. J. Probab. Math. Stat., 1 (2006), 281. Google Scholar 
[29] 
N. Ikeda and S. Watanabe, "Stochastic Differential Equations and Diffusions,", NorthHolland Publishing Company, (1989). Google Scholar 
[30] 
I. Karatzas and S. Shreve, "Brownian Motion and Stochastic Calculus,", SpringerVerlag, (1988). doi: 10.1007/9781468403022. Google Scholar 
[31] 
T. Kurtz, Particle representations for measurevalued population processes with spatially varying birth rates,, Stochastic models (Ottawa, 26 (2000), 299. Google Scholar 
[32] 
J. Le Gall, A pathvalued Markov process and its connections with partial differential equations,, First European Congress of Mathematics, 120 (1994), 185. Google Scholar 
[33] 
M. M. Meerschaert, E. Nane and P. Vellaisamy, Fractional Cauchy problems on bounded domains,, Ann. Probab., 37 (2009), 979. doi: 10.1214/08AOP426. Google Scholar 
[34] 
E. Nane, Stochastic solutions of a class of Higher order Cauchy problems in $\mathbb R^d$,, Stoch. Dyn., 10 (2010), 341. doi: 10.1142/S021949371000298X. Google Scholar 
[35] 
M. Reimers, One dimensional stochastic partial differential equations and the branching measure diffusion,, Probab. Theory Relat. Fields, 81 (1989), 319. doi: 10.1007/BF00340057. Google Scholar 
[36] 
R. Sowers, Shorttime geometry of random heat kernels, (English summary), Mem. Amer. Math. Soc., 132 (1998). Google Scholar 
[37] 
R. Sowers, Multidimensional reactiondiffusion equations with white noise boundary perturbations,, Ann. Probab., 22 (1994), 2071. Google Scholar 
[38] 
D. Stroock and S. Varadhan, "Multidimensional Diffusion Processes,", Reprint of the 1997 edition. Classics in Mathematics. SpringerVerlag, (1997), 978. Google Scholar 
[39] 
D. Stroock and W. Zheng, Markov chain approximations to symmetric diffusions,, Ann. Inst. H. Poincare Probab. Statist, 33 (1997), 619. Google Scholar 
[40] 
R. Temam, "InfiniteDimensional Dynamical Systems in Mechanics and Physics,", Second edition. Applied Mathematical Sciences, (1997), 0. Google Scholar 
[41] 
J. B. Walsh, "An Introduction to Stochastic Partial Differential Equations,", École d'été de Probabilités de SaintFlour XIV. Lecture Notes in Math. 1180. Springer, (1180). Google Scholar 
[42] 
Y. Xiao, Local times and related properties of multidimensional iterated Brownian motion,, J. Theoret. Probab., 11 (1998), 383. Google Scholar 
[1] 
María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems  B, 2010, 14 (2) : 473493. doi: 10.3934/dcdsb.2010.14.473 
[2] 
Monia Karouf. Reflected solutions of backward doubly SDEs driven by Brownian motion and Poisson random measure. Discrete & Continuous Dynamical Systems  A, 2019, 39 (10) : 55715601. doi: 10.3934/dcds.2019245 
[3] 
Yong Ren, Xuejuan Jia, Lanying Hu. Exponential stability of solutions to impulsive stochastic differential equations driven by $G$Brownian motion. Discrete & Continuous Dynamical Systems  B, 2015, 20 (7) : 21572169. doi: 10.3934/dcdsb.2015.20.2157 
[4] 
María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Local pathwise solutions to stochastic evolution equations driven by fractional Brownian motions with Hurst parameters $H\in (1/3,1/2]$. Discrete & Continuous Dynamical Systems  B, 2015, 20 (8) : 25532581. doi: 10.3934/dcdsb.2015.20.2553 
[5] 
Jin Li, Jianhua Huang. Dynamics of a 2D Stochastic nonNewtonian fluid driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems  B, 2012, 17 (7) : 24832508. doi: 10.3934/dcdsb.2012.17.2483 
[6] 
Shaokuan Chen, Shanjian Tang. Semilinear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401434. doi: 10.3934/mcrf.2015.5.401 
[7] 
Ji Shu. Random attractors for stochastic discrete KleinGordonSchrödinger equations driven by fractional Brownian motions. Discrete & Continuous Dynamical Systems  B, 2017, 22 (4) : 15871599. doi: 10.3934/dcdsb.2017077 
[8] 
Guolian Wang, Boling Guo. Stochastic Kortewegde Vries equation driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems  A, 2015, 35 (11) : 52555272. doi: 10.3934/dcds.2015.35.5255 
[9] 
Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$Brownian motion. Discrete & Continuous Dynamical Systems  B, 2015, 20 (1) : 281293. doi: 10.3934/dcdsb.2015.20.281 
[10] 
Yong Xu, Rong Guo, Di Liu, Huiqing Zhang, Jinqiao Duan. Stochastic averaging principle for dynamical systems with fractional Brownian motion. Discrete & Continuous Dynamical Systems  B, 2014, 19 (4) : 11971212. doi: 10.3934/dcdsb.2014.19.1197 
[11] 
Yong Xu, Bin Pei, Rong Guo. Stochastic averaging for slowfast dynamical systems with fractional Brownian motion. Discrete & Continuous Dynamical Systems  B, 2015, 20 (7) : 22572267. doi: 10.3934/dcdsb.2015.20.2257 
[12] 
Fabrice Baudoin, Camille Tardif. Hypocoercive estimates on foliations and velocity spherical Brownian motion. Kinetic & Related Models, 2018, 11 (1) : 123. doi: 10.3934/krm.2018001 
[13] 
Yong Ren, Wensheng Yin, Dongjin Zhu. Exponential stability of SDEs driven by $G$Brownian motion with delayed impulsive effects: average impulsive interval approach. Discrete & Continuous Dynamical Systems  B, 2018, 23 (8) : 33473360. doi: 10.3934/dcdsb.2018248 
[14] 
Ahmed Boudaoui, Tomás Caraballo, Abdelghani Ouahab. Stochastic differential equations with noninstantaneous impulses driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems  B, 2017, 22 (7) : 25212541. doi: 10.3934/dcdsb.2017084 
[15] 
Henryk Leszczyński, Monika Wrzosek. Newton's method for nonlinear stochastic wave equations driven by onedimensional Brownian motion. Mathematical Biosciences & Engineering, 2017, 14 (1) : 237248. doi: 10.3934/mbe.2017015 
[16] 
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of pth mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems  B, 2017, 22 (11) : 00. doi: 10.3934/dcdsb.2019213 
[17] 
Michael Röckner, Jiyong Shin, Gerald Trutnau. Nonsymmetric distorted Brownian motion: Strong solutions, strong Feller property and nonexplosion results. Discrete & Continuous Dynamical Systems  B, 2016, 21 (9) : 32193237. doi: 10.3934/dcdsb.2016095 
[18] 
Hiroshi Takahashi, Yozo Tamura. Recurrence of multidimensional diffusion processes in Brownian environments. Conference Publications, 2015, 2015 (special) : 10341040. doi: 10.3934/proc.2015.1034 
[19] 
Dingjun Yao, Rongming Wang, Lin Xu. Optimal asset control of a geometric Brownian motion with the transaction costs and bankruptcy permission. Journal of Industrial & Management Optimization, 2015, 11 (2) : 461478. doi: 10.3934/jimo.2015.11.461 
[20] 
Tadahisa Funaki, Yueyuan Gao, Danielle Hilhorst. Convergence of a finite volume scheme for a stochastic conservation law involving a $Q$brownian motion. Discrete & Continuous Dynamical Systems  B, 2018, 23 (4) : 14591502. doi: 10.3934/dcdsb.2018159 
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]