September  2013, 33(9): 3885-3901. doi: 10.3934/dcds.2013.33.3885

Invariant measures for general induced maps and towers

1. 

Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1, Canada

2. 

Fakultät für Mathematik, Universität Wien, Nordbergstrasse 15, 1090 Wien, Austria

Received  August 2012 Revised  February 2013 Published  March 2013

Absolutely continuous invariant measures (acims) for general induced transformations are shown to be related, in a natural way, to popular tower constructions regardless of any particulars of the latter. When combined with (an appropriate generalization of) the known integrability criterion for the existence of such acims, this leads to necessary and sufficient conditions under which acims can be lifted to, or projected from, nonsingular extensions.
Citation: Arno Berger, Roland Zweimüller. Invariant measures for general induced maps and towers. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3885-3901. doi: 10.3934/dcds.2013.33.3885
References:
[1]

J. Aaronson, "An Introduction to Infinite Ergodic Theory,", Mathematical Surveys and Monographs, 50 (1997). Google Scholar

[2]

J. Aaronson and T. Meyerovitch, Absolutely continuous, invariant measures for dissipative, ergodic transformations,, Colloq. Math., 110 (2008), 193. doi: 10.4064/cm110-1-7. Google Scholar

[3]

H. Bruin, Induced maps, Markov extensions and invariant measures in one-dimensional dynamics,, Commun. Math. Phys., 168 (1995), 571. Google Scholar

[4]

H. Bruin, M. Nicol and D. Terhesiu, On Young towers associated with infinite measure preserving transformations,, Stoch. Dyn., 9 (2009), 635. doi: 10.1142/S0219493709002816. Google Scholar

[5]

A. O. Gel'fond, A common property of number systems,, Izv. Akad. Nauk SSSR. Ser. Mat., 23 (1959), 809. Google Scholar

[6]

G. Helmberg, Über konservative Transformationen,, Math. Annalen, 165 (1966), 44. Google Scholar

[7]

F. Hofbauer, $\beta $-shifts have unique maximal measure,, Mh. Math., 85 (1978), 189. Google Scholar

[8]

F. Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy,, Isr. J. Math., 34 (1979), 213. doi: 10.1007/BF02760884. Google Scholar

[9]

S. Kakutani, Induced measure preserving transformations,, Proc. Imp. Acad. Sci. Tokyo, 19 (1943), 635. Google Scholar

[10]

G. Keller, Markov extensions, zeta-functions, and Fredholm theory for piecewise invertible dynamical systems,, Trans. Amer. Math. Soc., 314 (1989), 433. doi: 10.2307/2001395. Google Scholar

[11]

G. Keller, Lifting measures to Markov extensions,, Mh. Math., 108 (1989), 183. doi: 10.1007/BF01308670. Google Scholar

[12]

W. Parry, On the $\beta $-expansions of real numbers,, Acta Math. Acad. Sci. Hungar., 11 (1960), 401. Google Scholar

[13]

K. Petersen, "Ergodic Theory,", Cambridge Studies in Advanced Mathematics, 2 (1983). Google Scholar

[14]

M. Thaler, Transformations on [0,1] with infinite invariant measures,, Isr. J. Math., 46 (1983), 67. doi: 10.1007/BF02760623. Google Scholar

[15]

L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity,, Ann. Math. (2), 147 (1998), 585. doi: 10.2307/120960. Google Scholar

[16]

L.-S. Young, Recurrence times and rates of mixing,, Israel J. Math., 110 (1999), 153. doi: 10.1007/BF02808180. Google Scholar

[17]

R. Zweimüller, Ergodic properties of infinite measure-preserving interval maps with indifferent fixed points,, Ergod. Th. & Dynam. Sys., 20 (2000), 1519. doi: 10.1017/S0143385700000821. Google Scholar

[18]

R. Zweimüller, Invariant measures for general(ized) induced transformations,, Proc. Amer. Math. Soc., 133 (2005), 2283. doi: 10.1090/S0002-9939-05-07772-5. Google Scholar

[19]

R. Zweimüller, Measure preserving extensions and minimal wandering rates,, Israel J. Math., 181 (2011), 295. doi: 10.1007/s11856-011-0009-5. Google Scholar

show all references

References:
[1]

J. Aaronson, "An Introduction to Infinite Ergodic Theory,", Mathematical Surveys and Monographs, 50 (1997). Google Scholar

[2]

J. Aaronson and T. Meyerovitch, Absolutely continuous, invariant measures for dissipative, ergodic transformations,, Colloq. Math., 110 (2008), 193. doi: 10.4064/cm110-1-7. Google Scholar

[3]

H. Bruin, Induced maps, Markov extensions and invariant measures in one-dimensional dynamics,, Commun. Math. Phys., 168 (1995), 571. Google Scholar

[4]

H. Bruin, M. Nicol and D. Terhesiu, On Young towers associated with infinite measure preserving transformations,, Stoch. Dyn., 9 (2009), 635. doi: 10.1142/S0219493709002816. Google Scholar

[5]

A. O. Gel'fond, A common property of number systems,, Izv. Akad. Nauk SSSR. Ser. Mat., 23 (1959), 809. Google Scholar

[6]

G. Helmberg, Über konservative Transformationen,, Math. Annalen, 165 (1966), 44. Google Scholar

[7]

F. Hofbauer, $\beta $-shifts have unique maximal measure,, Mh. Math., 85 (1978), 189. Google Scholar

[8]

F. Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy,, Isr. J. Math., 34 (1979), 213. doi: 10.1007/BF02760884. Google Scholar

[9]

S. Kakutani, Induced measure preserving transformations,, Proc. Imp. Acad. Sci. Tokyo, 19 (1943), 635. Google Scholar

[10]

G. Keller, Markov extensions, zeta-functions, and Fredholm theory for piecewise invertible dynamical systems,, Trans. Amer. Math. Soc., 314 (1989), 433. doi: 10.2307/2001395. Google Scholar

[11]

G. Keller, Lifting measures to Markov extensions,, Mh. Math., 108 (1989), 183. doi: 10.1007/BF01308670. Google Scholar

[12]

W. Parry, On the $\beta $-expansions of real numbers,, Acta Math. Acad. Sci. Hungar., 11 (1960), 401. Google Scholar

[13]

K. Petersen, "Ergodic Theory,", Cambridge Studies in Advanced Mathematics, 2 (1983). Google Scholar

[14]

M. Thaler, Transformations on [0,1] with infinite invariant measures,, Isr. J. Math., 46 (1983), 67. doi: 10.1007/BF02760623. Google Scholar

[15]

L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity,, Ann. Math. (2), 147 (1998), 585. doi: 10.2307/120960. Google Scholar

[16]

L.-S. Young, Recurrence times and rates of mixing,, Israel J. Math., 110 (1999), 153. doi: 10.1007/BF02808180. Google Scholar

[17]

R. Zweimüller, Ergodic properties of infinite measure-preserving interval maps with indifferent fixed points,, Ergod. Th. & Dynam. Sys., 20 (2000), 1519. doi: 10.1017/S0143385700000821. Google Scholar

[18]

R. Zweimüller, Invariant measures for general(ized) induced transformations,, Proc. Amer. Math. Soc., 133 (2005), 2283. doi: 10.1090/S0002-9939-05-07772-5. Google Scholar

[19]

R. Zweimüller, Measure preserving extensions and minimal wandering rates,, Israel J. Math., 181 (2011), 295. doi: 10.1007/s11856-011-0009-5. Google Scholar

[1]

Xian Chen, Zhi-Ming Ma. A transformation of Markov jump processes and applications in genetic study. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5061-5084. doi: 10.3934/dcds.2014.34.5061

[2]

Ingenuin Gasser. Modelling and simulation of a solar updraft tower. Kinetic & Related Models, 2009, 2 (1) : 191-204. doi: 10.3934/krm.2009.2.191

[3]

Lyndsey Clark. The $\beta$-transformation with a hole. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1249-1269. doi: 10.3934/dcds.2016.36.1249

[4]

David Ginzburg and Joseph Hundley. A new tower of Rankin-Selberg integrals. Electronic Research Announcements, 2006, 12: 56-62.

[5]

Marc Chamberland, Victor H. Moll. Dynamics of the degree six Landen transformation. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 905-919. doi: 10.3934/dcds.2006.15.905

[6]

Oğul Esen, Partha Guha. On the geometry of the Schmidt-Legendre transformation. Journal of Geometric Mechanics, 2018, 10 (3) : 251-291. doi: 10.3934/jgm.2018010

[7]

Sze-Bi Hsu, Bernold Fiedler, Hsiu-Hau Lin. Classification of potential flows under renormalization group transformation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 437-446. doi: 10.3934/dcdsb.2016.21.437

[8]

N. Kamran, K. Tenenblat. Periodic systems for the higher-dimensional Laplace transformation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 359-378. doi: 10.3934/dcds.1998.4.359

[9]

Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433

[10]

E. García-Toraño Andrés, Bavo Langerock, Frans Cantrijn. Aspects of reduction and transformation of Lagrangian systems with symmetry. Journal of Geometric Mechanics, 2014, 6 (1) : 1-23. doi: 10.3934/jgm.2014.6.1

[11]

Andrey Kochergin. A Besicovitch cylindrical transformation with Hölder function. Electronic Research Announcements, 2015, 22: 87-91. doi: 10.3934/era.2015.22.87

[12]

Hong-Gunn Chew, Cheng-Chew Lim. On regularisation parameter transformation of support vector machines. Journal of Industrial & Management Optimization, 2009, 5 (2) : 403-415. doi: 10.3934/jimo.2009.5.403

[13]

Hongyu Liu, Ting Zhou. Two dimensional invisibility cloaking via transformation optics. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 525-543. doi: 10.3934/dcds.2011.31.525

[14]

Andrés Contreras, Manuel del Pino. Nodal bubble-tower solutions to radial elliptic problems near criticality. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 525-539. doi: 10.3934/dcds.2006.16.525

[15]

Alex Castro, Wyatt Howard, Corey Shanbrom. Complete spelling rules for the Monster tower over three-space. Journal of Geometric Mechanics, 2017, 9 (3) : 317-333. doi: 10.3934/jgm.2017013

[16]

Yuxin Ge, Ruihua Jing, Feng Zhou. Bubble tower solutions of slightly supercritical elliptic equations and application in symmetric domains. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 751-770. doi: 10.3934/dcds.2007.17.751

[17]

Zhongyuan Liu. Nodal Bubble-Tower Solutions for a semilinear elliptic problem with competing powers. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5299-5317. doi: 10.3934/dcds.2017230

[18]

Palash Sarkar, Shashank Singh. A unified polynomial selection method for the (tower) number field sieve algorithm. Advances in Mathematics of Communications, 2019, 13 (3) : 435-455. doi: 10.3934/amc.2019028

[19]

Augusto Visintin. An extension of the Fitzpatrick theory. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2039-2058. doi: 10.3934/cpaa.2014.13.2039

[20]

Tomáš Roubíček. Modelling of thermodynamics of martensitic transformation in shape-memory alloys. Conference Publications, 2007, 2007 (Special) : 892-902. doi: 10.3934/proc.2007.2007.892

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]