August  2013, 33(8): 3741-3751. doi: 10.3934/dcds.2013.33.3741

A footnote on expanding maps

1. 

Dipartimento di Matematica, II Università di Roma (Tor Vergata), Via della Ricerca Scientifica, 00133 Roma

Received  June 2012 Revised  October 2012 Published  January 2013

I introduce Banach spaces on which it is possible to precisely characterize the spectrum of the transfer operator associated to a piecewise expanding map with Hölder weight.
Citation: Carlangelo Liverani. A footnote on expanding maps. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3741-3751. doi: 10.3934/dcds.2013.33.3741
References:
[1]

V. Araujo, S. Galatolo and M.-J. Pacifico, Decay of correlations for maps with uniformly contracting fibers and logarithm law for singular hyperbolic attractors,, Preprint , (). Google Scholar

[2]

V. Baladi, "Positive Transfer Operators & Decay of Correlation,", 16 of Advanced Series in Nonlinear Dynamics. World Scientific, 16 (2000). doi: 10.1142/9789812813633. Google Scholar

[3]

V. Baladi, Anisotropic Sobolev spaces and dynamical transfer operators: $C^\infty$ foliations,, Algebraic and Topological Dynamics, 385 (2005), 123. doi: 10.1090/conm/385/07194. Google Scholar

[4]

V. Baladi and S. Gouëzel, Good Banach spaces for piecewise hyperbolic maps via interpolation,, Ann. Inst. Henri Poincaré, 26 (2009), 1453. doi: 10.1016/j.anihpc.2009.01.001. Google Scholar

[5]

V. Baladi and S. Gouëzel, Banach spaces for piecewise cone hyperbolic maps,, J. Modern Dynamics, 4 (2010), 91. doi: 10.3934/jmd.2010.4.91. Google Scholar

[6]

V. Baladi and C. Liverani, Exponential decay of correlations for piecewise cone hyperbolic contact flows,, Communications in Mathematical Physics, 314 (2012), 689. doi: 10.1007/s00220-012-1538-4. Google Scholar

[7]

V. Baladi and M. Tsujii, Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms,, Annales de L'Institut Fourier, 57 (2007), 127. Google Scholar

[8]

V. Baladi and M. Tsujii, Dynamical determinants and spectrum for hyperbolic diffeomorphisms,, in, 469 (2008), 29. doi: 10.1090/conm/469/09160. Google Scholar

[9]

M. Blank, G. Keller and C. Liverani, Ruelle-Perron-Frobenius spectrum for Anosov maps,, Nonlinearity, 15 (2002), 1905. doi: 10.1088/0951-7715/15/6/309. Google Scholar

[10]

O. Butterley, An alternative approach to generalised BV and the application to expanding interval maps,, Discrete Contin. Dyn. Syst., 33 (2013), 3355. Google Scholar

[11]

, O. Butterey,, Private Communication., (). Google Scholar

[12]

W. Cowieson, Absolutely continuous invariant measures for most piecewise smooth expanding maps,, Ergodic Theory Dynam. Systems, 22 (2002), 1061. doi: 10.1017/S0143385702000627. Google Scholar

[13]

M. Demers and C. Liverani, Stability of statistical properties in two-dimensional piecewise hyperbolic maps,, Trans. Amer. Math. Soc., 360 (2008), 4777. doi: 10.1090/S0002-9947-08-04464-4. Google Scholar

[14]

V. M. Gundlach and Y. Latushkin, A sharp formula for the essential spectral radius of the Ruelle transfer operator on smooth and Hölder spaces,, Ergodic Theory Dynam. Systems, 23 (2003), 175. doi: 10.1017/S0143385702000962. Google Scholar

[15]

S. Gouëzel and C. Liverani, Banach spaces adapted to Anosov systems,, Ergodic Theory Dynam. Systems, 26 (2006), 189. doi: 10.1017/S0143385705000374. Google Scholar

[16]

S. Gouëzel and C. Liverani, Compact locally maximal hyperbolic sets for smooth maps: Fine statistical properties,, J. Diff. Geom., 79 (2008), 433. Google Scholar

[17]

M. Gromov, "Metric Structures for Riemannian and Non-Riemannian Spaces,", 152 of Progress in Mathematics, 152 (1999). Google Scholar

[18]

G. Keller, Generalized bounded variation and applications to piecewise monotonic transformations,, Probability Theory and Related Fields, 69 (1985), 461. doi: 10.1007/BF00532744. Google Scholar

[19]

G. Keller and C. Liverani, Stability of the spectrum for transfer operators,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28 (1999), 141. Google Scholar

[20]

C. Liverani, Invariant measures and their properties. A functional analytic point of view,, Dynamical Systems. Part II, (2003), 185. Google Scholar

[21]

C. Liverani, Multidimensional expanding maps with singularities: A pedestrian approach,, Ergodic Theory and Dynamical Systems, 33 (2013), 168. doi: 10.1017/S0143385711000939. Google Scholar

[22]

C. Liverani, On contact Anosov flows,, Ann. of Math. (2), 159 (2004), 1275. doi: 10.4007/annals.2004.159.1275. Google Scholar

[23]

B. Saussol, Absolutely continuous invariant measures for multidimensional expanding maps,, Israel J. Math., 116 (2000), 223. doi: 10.1007/BF02773219. Google Scholar

[24]

M. Rychlik, Bounded variation and invariant measures,, Studia Math., 76 (1983), 69. Google Scholar

[25]

D. Thomine, A spectral gap for transfer operators of piecewise expanding maps,, Discrete Contin. Dyn. Syst., 30 (2011), 917. doi: 10.3934/dcds.2011.30.917. Google Scholar

[26]

T. Masato, Quasi-compactness of transfer operators for contact Anosov flows,, Nonlinearity, 23 (2010), 1495. doi: 10.1088/0951-7715/23/7/001. Google Scholar

[27]

Z. Roger, Integration of Hölder forms and currents in snowflake spaces,, Calc. Var. Partial Differential Equations, 40 (2011), 99. doi: 10.1007/s00526-010-0335-1. Google Scholar

show all references

References:
[1]

V. Araujo, S. Galatolo and M.-J. Pacifico, Decay of correlations for maps with uniformly contracting fibers and logarithm law for singular hyperbolic attractors,, Preprint , (). Google Scholar

[2]

V. Baladi, "Positive Transfer Operators & Decay of Correlation,", 16 of Advanced Series in Nonlinear Dynamics. World Scientific, 16 (2000). doi: 10.1142/9789812813633. Google Scholar

[3]

V. Baladi, Anisotropic Sobolev spaces and dynamical transfer operators: $C^\infty$ foliations,, Algebraic and Topological Dynamics, 385 (2005), 123. doi: 10.1090/conm/385/07194. Google Scholar

[4]

V. Baladi and S. Gouëzel, Good Banach spaces for piecewise hyperbolic maps via interpolation,, Ann. Inst. Henri Poincaré, 26 (2009), 1453. doi: 10.1016/j.anihpc.2009.01.001. Google Scholar

[5]

V. Baladi and S. Gouëzel, Banach spaces for piecewise cone hyperbolic maps,, J. Modern Dynamics, 4 (2010), 91. doi: 10.3934/jmd.2010.4.91. Google Scholar

[6]

V. Baladi and C. Liverani, Exponential decay of correlations for piecewise cone hyperbolic contact flows,, Communications in Mathematical Physics, 314 (2012), 689. doi: 10.1007/s00220-012-1538-4. Google Scholar

[7]

V. Baladi and M. Tsujii, Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms,, Annales de L'Institut Fourier, 57 (2007), 127. Google Scholar

[8]

V. Baladi and M. Tsujii, Dynamical determinants and spectrum for hyperbolic diffeomorphisms,, in, 469 (2008), 29. doi: 10.1090/conm/469/09160. Google Scholar

[9]

M. Blank, G. Keller and C. Liverani, Ruelle-Perron-Frobenius spectrum for Anosov maps,, Nonlinearity, 15 (2002), 1905. doi: 10.1088/0951-7715/15/6/309. Google Scholar

[10]

O. Butterley, An alternative approach to generalised BV and the application to expanding interval maps,, Discrete Contin. Dyn. Syst., 33 (2013), 3355. Google Scholar

[11]

, O. Butterey,, Private Communication., (). Google Scholar

[12]

W. Cowieson, Absolutely continuous invariant measures for most piecewise smooth expanding maps,, Ergodic Theory Dynam. Systems, 22 (2002), 1061. doi: 10.1017/S0143385702000627. Google Scholar

[13]

M. Demers and C. Liverani, Stability of statistical properties in two-dimensional piecewise hyperbolic maps,, Trans. Amer. Math. Soc., 360 (2008), 4777. doi: 10.1090/S0002-9947-08-04464-4. Google Scholar

[14]

V. M. Gundlach and Y. Latushkin, A sharp formula for the essential spectral radius of the Ruelle transfer operator on smooth and Hölder spaces,, Ergodic Theory Dynam. Systems, 23 (2003), 175. doi: 10.1017/S0143385702000962. Google Scholar

[15]

S. Gouëzel and C. Liverani, Banach spaces adapted to Anosov systems,, Ergodic Theory Dynam. Systems, 26 (2006), 189. doi: 10.1017/S0143385705000374. Google Scholar

[16]

S. Gouëzel and C. Liverani, Compact locally maximal hyperbolic sets for smooth maps: Fine statistical properties,, J. Diff. Geom., 79 (2008), 433. Google Scholar

[17]

M. Gromov, "Metric Structures for Riemannian and Non-Riemannian Spaces,", 152 of Progress in Mathematics, 152 (1999). Google Scholar

[18]

G. Keller, Generalized bounded variation and applications to piecewise monotonic transformations,, Probability Theory and Related Fields, 69 (1985), 461. doi: 10.1007/BF00532744. Google Scholar

[19]

G. Keller and C. Liverani, Stability of the spectrum for transfer operators,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28 (1999), 141. Google Scholar

[20]

C. Liverani, Invariant measures and their properties. A functional analytic point of view,, Dynamical Systems. Part II, (2003), 185. Google Scholar

[21]

C. Liverani, Multidimensional expanding maps with singularities: A pedestrian approach,, Ergodic Theory and Dynamical Systems, 33 (2013), 168. doi: 10.1017/S0143385711000939. Google Scholar

[22]

C. Liverani, On contact Anosov flows,, Ann. of Math. (2), 159 (2004), 1275. doi: 10.4007/annals.2004.159.1275. Google Scholar

[23]

B. Saussol, Absolutely continuous invariant measures for multidimensional expanding maps,, Israel J. Math., 116 (2000), 223. doi: 10.1007/BF02773219. Google Scholar

[24]

M. Rychlik, Bounded variation and invariant measures,, Studia Math., 76 (1983), 69. Google Scholar

[25]

D. Thomine, A spectral gap for transfer operators of piecewise expanding maps,, Discrete Contin. Dyn. Syst., 30 (2011), 917. doi: 10.3934/dcds.2011.30.917. Google Scholar

[26]

T. Masato, Quasi-compactness of transfer operators for contact Anosov flows,, Nonlinearity, 23 (2010), 1495. doi: 10.1088/0951-7715/23/7/001. Google Scholar

[27]

Z. Roger, Integration of Hölder forms and currents in snowflake spaces,, Calc. Var. Partial Differential Equations, 40 (2011), 99. doi: 10.1007/s00526-010-0335-1. Google Scholar

[1]

Karla Díaz-Ordaz. Decay of correlations for non-Hölder observables for one-dimensional expanding Lorenz-like maps. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 159-176. doi: 10.3934/dcds.2006.15.159

[2]

Damien Thomine. A spectral gap for transfer operators of piecewise expanding maps. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 917-944. doi: 10.3934/dcds.2011.30.917

[3]

Michiko Yuri. Polynomial decay of correlations for intermittent sofic systems. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 445-464. doi: 10.3934/dcds.2008.22.445

[4]

Vincent Lynch. Decay of correlations for non-Hölder observables. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 19-46. doi: 10.3934/dcds.2006.16.19

[5]

Ioannis Konstantoulas. Effective decay of multiple correlations in semidirect product actions. Journal of Modern Dynamics, 2016, 10: 81-111. doi: 10.3934/jmd.2016.10.81

[6]

Dieter Mayer, Tobias Mühlenbruch, Fredrik Strömberg. The transfer operator for the Hecke triangle groups. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2453-2484. doi: 10.3934/dcds.2012.32.2453

[7]

Peter Haïssinsky, Kevin M. Pilgrim. An algebraic characterization of expanding Thurston maps. Journal of Modern Dynamics, 2012, 6 (4) : 451-476. doi: 10.3934/jmd.2012.6.451

[8]

Peter Haïssinsky, Kevin M. Pilgrim. Examples of coarse expanding conformal maps. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2403-2416. doi: 10.3934/dcds.2012.32.2403

[9]

José F. Alves. Stochastic behavior of asymptotically expanding maps. Conference Publications, 2001, 2001 (Special) : 14-21. doi: 10.3934/proc.2001.2001.14

[10]

Yushi Nakano, Shota Sakamoto. Spectra of expanding maps on Besov spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1779-1797. doi: 10.3934/dcds.2019077

[11]

Stefano Galatolo, Pietro Peterlongo. Long hitting time, slow decay of correlations and arithmetical properties. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 185-204. doi: 10.3934/dcds.2010.27.185

[12]

Mark F. Demers, Hong-Kun Zhang. Spectral analysis of the transfer operator for the Lorentz gas. Journal of Modern Dynamics, 2011, 5 (4) : 665-709. doi: 10.3934/jmd.2011.5.665

[13]

Patricia Domínguez, Peter Makienko, Guillermo Sienra. Ruelle operator and transcendental entire maps. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 773-789. doi: 10.3934/dcds.2005.12.773

[14]

Rafael De La Llave, Michael Shub, Carles Simó. Entropy estimates for a family of expanding maps of the circle. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 597-608. doi: 10.3934/dcdsb.2008.10.597

[15]

Michael Blank. Finite rank approximations of expanding maps with neutral singularities. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 749-762. doi: 10.3934/dcds.2008.21.749

[16]

Antonio Pumariño, José Ángel Rodríguez, Enrique Vigil. Renormalizable Expanding Baker Maps: Coexistence of strange attractors. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1651-1678. doi: 10.3934/dcds.2017068

[17]

Xu Zhang, Yuming Shi, Guanrong Chen. Coupled-expanding maps under small perturbations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1291-1307. doi: 10.3934/dcds.2011.29.1291

[18]

Viviane Baladi, Daniel Smania. Smooth deformations of piecewise expanding unimodal maps. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 685-703. doi: 10.3934/dcds.2009.23.685

[19]

Yong Fang. On smooth conjugacy of expanding maps in higher dimensions. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 687-697. doi: 10.3934/dcds.2011.30.687

[20]

Yiming Ding. Renormalization and $\alpha$-limit set for expanding Lorenz maps. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 979-999. doi: 10.3934/dcds.2011.29.979

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]