August  2013, 33(8): 3497-3516. doi: 10.3934/dcds.2013.33.3497

Uniformity in the Wiener-Wintner theorem for nilsequences

1. 

KdV Institute for Mathematics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam

2. 

Korteweg-de Vries Institute for Mathematics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, Netherlands

Received  May 2012 Revised  October 2012 Published  January 2013

We prove a uniform extension of the Wiener-Wintner theorem for nilsequences due to Host and Kra and a nilsequence extension of the topological Wiener-Wintner theorem due to Assani. Our argument is based on (vertical) Fourier analysis and a Sobolev embedding theorem.
Citation: Tanja Eisner, Pavel Zorin-Kranich. Uniformity in the Wiener-Wintner theorem for nilsequences. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3497-3516. doi: 10.3934/dcds.2013.33.3497
References:
[1]

Robert A. Adams and John J. F. Fournier, "Sobolev Spaces,", Second edition, 140 (2003). Google Scholar

[2]

Idris Assani and Kimberly Presser, Pointwise characteristic factors for the multiterm return times theorem,, Ergodic Theory Dynam. Systems, 32 (2012), 341. Google Scholar

[3]

Idris Assani, "Wiener Wintner Ergodic Theorems,", World Scientific Publishing Co., (2003). Google Scholar

[4]

Idris Assani, Pointwise convergence of ergodic averages along cubes,, J. Anal. Math., 110 (2010), 241. doi: 10.1007/s11854-010-0006-3. Google Scholar

[5]

Vitaly Bergelson and Alexander Leibman, Distribution of values of bounded generalized polynomials,, Acta Math., 198 (2007), 155. doi: 10.1007/s11511-007-0015-y. Google Scholar

[6]

J. Bourgain, Double recurrence and almost sure convergence,, J. Reine Angew. Math., 404 (1990), 140. doi: 10.1515/crll.1990.404.140. Google Scholar

[7]

S. Butkevich, "Convergence of Averages in Ergodic Theory,", Ph.D. thesis, (2000). Google Scholar

[8]

Qing Chu, Nikos Frantzikinakis and Bernard Host, Ergodic averages of commuting transformations with distinct degree polynomial iterates,, Proc. Lond. Math. Soc., 102 (2011), 801. doi: 10.1112/plms/pdq037. Google Scholar

[9]

Qing Chu, Convergence of weighted polynomial multiple ergodic averages,, Proc. Amer. Math. Soc., 137 (2009), 1363. doi: 10.1090/S0002-9939-08-09614-7. Google Scholar

[10]

Andrés del Junco and Joseph Rosenblatt, Counterexamples in ergodic theory and number theory,, Math. Ann., 245 (1979), 185. doi: 10.1007/BF01673506. Google Scholar

[11]

Tanja Eisner and Terence Tao, Large values of the Gowers-Host-Kra seminorms,, J. Anal. Math., 117 (2012), 133. doi: 10.1007/s11854-012-0018-2. Google Scholar

[12]

Nikos Frantzikinakis, Uniformity in the polynomial Wiener-Wintner theorem,, Ergodic Theory Dynam. Systems, 26 (2006), 1061. doi: 10.1017/S0143385706000204. Google Scholar

[13]

H. Furstenberg, "Recurrence in Ergodic Theory and Combinatorial Number Theory,", M. B. Porter Lectures, (1981). Google Scholar

[14]

Benjamin Green and Terence Tao, Linear equations in primes,, Ann. of Math., 171 (2010), 1753. doi: 10.4007/annals.2010.171.1753. Google Scholar

[15]

Ben Green and Terence Tao, The quantitative behaviour of polynomial orbits on nilmanifolds,, Ann. of Math., 175 (2012), 465. doi: 10.4007/annals.2012.175.2.2. Google Scholar

[16]

Ben Green, Terence Tao and Tamar Ziegler, An inverse theorem for the Gowers $U^{s+1}[N]$-norm,, Ann. of Math., 176 (2012), 1231. doi: 10.4007/annals.2012.176.2.11. Google Scholar

[17]

Bernard Host and Bryna Kra, Nonconventional ergodic averages and nilmanifolds,, Ann. of Math., 161 (2005), 397. doi: 10.4007/annals.2005.161.397. Google Scholar

[18]

Bernard Host and Bryna Kra, Analysis of two step nilsequences,, Ann. Inst. Fourier (Grenoble), 58 (2008), 1407. Google Scholar

[19]

Bernard Host and Bryna Kra, Uniformity seminorms on $l^\infty$ and applications,, J. Anal. Math., 108 (2009), 219. doi: 10.1007/s11854-009-0024-1. Google Scholar

[20]

Bernard Host, Bryna Kra and Alejandro Maass, Nilsequences and a structure theorem for topological dynamical systems,, Adv. Math., 224 (2010), 103. doi: 10.1016/j.aim.2009.11.009. Google Scholar

[21]

Bernard Host, Bryna Kra and Alejandro Maass, Complexity of nilsystems and systems lacking nilfactors,, preprint, (2012). Google Scholar

[22]

Jean-Pierre Kahane, "Some Random Series of Functions,", Second edition, 5 (1985). Google Scholar

[23]

A. Leibman, Polynomial mappings of groups,, Israel J. Math., 129 (2002), 29. doi: 10.1007/BF02773152. Google Scholar

[24]

A. Leibman, Convergence of multiple ergodic averages along polynomials of several variables,, Israel J. Math., 146 (2005), 303. doi: 10.1007/BF02773538. Google Scholar

[25]

A. Leibman, Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold,, Ergodic Theory Dynam. Systems, 25 (2005), 201. doi: 10.1017/S0143385704000215. Google Scholar

[26]

Daniel Lenz, Continuity of eigenfunctions of uniquely ergodic dynamical systems and intensity of Bragg peaks,, Comm. Math. Phys., 287 (2009), 225. doi: 10.1007/s00220-008-0594-2. Google Scholar

[27]

E. Lesigne, Un théorème de disjonction de systèmes dynamiques et une généralisation du théorème ergodique de Wiener-Wintner,, Ergodic Theory Dynam. Systems, 10 (1990), 513. doi: 10.1017/S014338570000571X. Google Scholar

[28]

E. Lesigne, Spectre quasi-discret et théorème ergodique de Wiener-Wintner pour les polynômes,, Ergodic Theory Dynam. Systems, 13 (1993), 767. Google Scholar

[29]

Elon Lindenstrauss, Pointwise theorems for amenable groups,, Invent. Math., 146 (2001), 259. doi: 10.1007/s002220100162. Google Scholar

[30]

A. I. Mal'cev, On a class of homogeneous spaces,, Izvestiya Akad. Nauk. SSSR. Ser. Mat., 13 (1949), 9. Google Scholar

[31]

E. Arthur Robinson, Jr., On uniform convergence in the Wiener-Wintner theorem,, J. London Math. Soc., 49 (1994), 493. doi: 10.1112/jlms/49.3.493. Google Scholar

[32]

Joseph M. Rosenblatt and Máté Wierdl, A new maximal inequality and its applications,, Ergodic Theory Dynam. Systems, 12 (1992), 509. doi: 10.1017/S0143385700006921. Google Scholar

[33]

Terence Tao, "Higher Order Fourier Analysis,", Graduate Studies in Mathematics, 142 (2012). Google Scholar

[34]

Peter Walters, "An Introduction to Ergodic Theory,", Graduate Texts in Mathematics, 79 (1982). Google Scholar

[35]

Norbert Wiener and Aurel Wintner, Harmonic analysis and ergodic theory,, Amer. J. Math., 63 (1941), 415. Google Scholar

[36]

Pavel Zorin-Kranich, A nilpotent IP polynomial multiple recurrence theorem,, preprint, (2012). Google Scholar

show all references

References:
[1]

Robert A. Adams and John J. F. Fournier, "Sobolev Spaces,", Second edition, 140 (2003). Google Scholar

[2]

Idris Assani and Kimberly Presser, Pointwise characteristic factors for the multiterm return times theorem,, Ergodic Theory Dynam. Systems, 32 (2012), 341. Google Scholar

[3]

Idris Assani, "Wiener Wintner Ergodic Theorems,", World Scientific Publishing Co., (2003). Google Scholar

[4]

Idris Assani, Pointwise convergence of ergodic averages along cubes,, J. Anal. Math., 110 (2010), 241. doi: 10.1007/s11854-010-0006-3. Google Scholar

[5]

Vitaly Bergelson and Alexander Leibman, Distribution of values of bounded generalized polynomials,, Acta Math., 198 (2007), 155. doi: 10.1007/s11511-007-0015-y. Google Scholar

[6]

J. Bourgain, Double recurrence and almost sure convergence,, J. Reine Angew. Math., 404 (1990), 140. doi: 10.1515/crll.1990.404.140. Google Scholar

[7]

S. Butkevich, "Convergence of Averages in Ergodic Theory,", Ph.D. thesis, (2000). Google Scholar

[8]

Qing Chu, Nikos Frantzikinakis and Bernard Host, Ergodic averages of commuting transformations with distinct degree polynomial iterates,, Proc. Lond. Math. Soc., 102 (2011), 801. doi: 10.1112/plms/pdq037. Google Scholar

[9]

Qing Chu, Convergence of weighted polynomial multiple ergodic averages,, Proc. Amer. Math. Soc., 137 (2009), 1363. doi: 10.1090/S0002-9939-08-09614-7. Google Scholar

[10]

Andrés del Junco and Joseph Rosenblatt, Counterexamples in ergodic theory and number theory,, Math. Ann., 245 (1979), 185. doi: 10.1007/BF01673506. Google Scholar

[11]

Tanja Eisner and Terence Tao, Large values of the Gowers-Host-Kra seminorms,, J. Anal. Math., 117 (2012), 133. doi: 10.1007/s11854-012-0018-2. Google Scholar

[12]

Nikos Frantzikinakis, Uniformity in the polynomial Wiener-Wintner theorem,, Ergodic Theory Dynam. Systems, 26 (2006), 1061. doi: 10.1017/S0143385706000204. Google Scholar

[13]

H. Furstenberg, "Recurrence in Ergodic Theory and Combinatorial Number Theory,", M. B. Porter Lectures, (1981). Google Scholar

[14]

Benjamin Green and Terence Tao, Linear equations in primes,, Ann. of Math., 171 (2010), 1753. doi: 10.4007/annals.2010.171.1753. Google Scholar

[15]

Ben Green and Terence Tao, The quantitative behaviour of polynomial orbits on nilmanifolds,, Ann. of Math., 175 (2012), 465. doi: 10.4007/annals.2012.175.2.2. Google Scholar

[16]

Ben Green, Terence Tao and Tamar Ziegler, An inverse theorem for the Gowers $U^{s+1}[N]$-norm,, Ann. of Math., 176 (2012), 1231. doi: 10.4007/annals.2012.176.2.11. Google Scholar

[17]

Bernard Host and Bryna Kra, Nonconventional ergodic averages and nilmanifolds,, Ann. of Math., 161 (2005), 397. doi: 10.4007/annals.2005.161.397. Google Scholar

[18]

Bernard Host and Bryna Kra, Analysis of two step nilsequences,, Ann. Inst. Fourier (Grenoble), 58 (2008), 1407. Google Scholar

[19]

Bernard Host and Bryna Kra, Uniformity seminorms on $l^\infty$ and applications,, J. Anal. Math., 108 (2009), 219. doi: 10.1007/s11854-009-0024-1. Google Scholar

[20]

Bernard Host, Bryna Kra and Alejandro Maass, Nilsequences and a structure theorem for topological dynamical systems,, Adv. Math., 224 (2010), 103. doi: 10.1016/j.aim.2009.11.009. Google Scholar

[21]

Bernard Host, Bryna Kra and Alejandro Maass, Complexity of nilsystems and systems lacking nilfactors,, preprint, (2012). Google Scholar

[22]

Jean-Pierre Kahane, "Some Random Series of Functions,", Second edition, 5 (1985). Google Scholar

[23]

A. Leibman, Polynomial mappings of groups,, Israel J. Math., 129 (2002), 29. doi: 10.1007/BF02773152. Google Scholar

[24]

A. Leibman, Convergence of multiple ergodic averages along polynomials of several variables,, Israel J. Math., 146 (2005), 303. doi: 10.1007/BF02773538. Google Scholar

[25]

A. Leibman, Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold,, Ergodic Theory Dynam. Systems, 25 (2005), 201. doi: 10.1017/S0143385704000215. Google Scholar

[26]

Daniel Lenz, Continuity of eigenfunctions of uniquely ergodic dynamical systems and intensity of Bragg peaks,, Comm. Math. Phys., 287 (2009), 225. doi: 10.1007/s00220-008-0594-2. Google Scholar

[27]

E. Lesigne, Un théorème de disjonction de systèmes dynamiques et une généralisation du théorème ergodique de Wiener-Wintner,, Ergodic Theory Dynam. Systems, 10 (1990), 513. doi: 10.1017/S014338570000571X. Google Scholar

[28]

E. Lesigne, Spectre quasi-discret et théorème ergodique de Wiener-Wintner pour les polynômes,, Ergodic Theory Dynam. Systems, 13 (1993), 767. Google Scholar

[29]

Elon Lindenstrauss, Pointwise theorems for amenable groups,, Invent. Math., 146 (2001), 259. doi: 10.1007/s002220100162. Google Scholar

[30]

A. I. Mal'cev, On a class of homogeneous spaces,, Izvestiya Akad. Nauk. SSSR. Ser. Mat., 13 (1949), 9. Google Scholar

[31]

E. Arthur Robinson, Jr., On uniform convergence in the Wiener-Wintner theorem,, J. London Math. Soc., 49 (1994), 493. doi: 10.1112/jlms/49.3.493. Google Scholar

[32]

Joseph M. Rosenblatt and Máté Wierdl, A new maximal inequality and its applications,, Ergodic Theory Dynam. Systems, 12 (1992), 509. doi: 10.1017/S0143385700006921. Google Scholar

[33]

Terence Tao, "Higher Order Fourier Analysis,", Graduate Studies in Mathematics, 142 (2012). Google Scholar

[34]

Peter Walters, "An Introduction to Ergodic Theory,", Graduate Texts in Mathematics, 79 (1982). Google Scholar

[35]

Norbert Wiener and Aurel Wintner, Harmonic analysis and ergodic theory,, Amer. J. Math., 63 (1941), 415. Google Scholar

[36]

Pavel Zorin-Kranich, A nilpotent IP polynomial multiple recurrence theorem,, preprint, (2012). Google Scholar

[1]

Seung Jun Chang, Jae Gil Choi. A Cameron-Storvick theorem for the analytic Feynman integral associated with Gaussian paths on a Wiener space and applications. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2225-2238. doi: 10.3934/cpaa.2018106

[2]

Mateusz Krukowski. Arzelà-Ascoli's theorem in uniform spaces. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 283-294. doi: 10.3934/dcdsb.2018020

[3]

Karl Kunisch, Markus Müller. Uniform convergence of the POD method and applications to optimal control. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4477-4501. doi: 10.3934/dcds.2015.35.4477

[4]

Victor Wasiolek. Uniform global existence and convergence of Euler-Maxwell systems with small parameters. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2007-2021. doi: 10.3934/cpaa.2016025

[5]

Julia Brettschneider. On uniform convergence in ergodic theorems for a class of skew product transformations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 873-891. doi: 10.3934/dcds.2011.29.873

[6]

Grigor Nika, Bogdan Vernescu. Rate of convergence for a multi-scale model of dilute emulsions with non-uniform surface tension. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1553-1564. doi: 10.3934/dcdss.2016062

[7]

Liu Liu. Uniform spectral convergence of the stochastic Galerkin method for the linear semiconductor Boltzmann equation with random inputs and diffusive scaling. Kinetic & Related Models, 2018, 11 (5) : 1139-1156. doi: 10.3934/krm.2018044

[8]

Jacek Banasiak, Amartya Goswami. Singularly perturbed population models with reducible migration matrix 1. Sova-Kurtz theorem and the convergence to the aggregated model. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 617-635. doi: 10.3934/dcds.2015.35.617

[9]

Byung-Soo Lee. A convergence theorem of common fixed points of a countably infinite family of asymptotically quasi-$f_i$-expansive mappings in convex metric spaces. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 557-565. doi: 10.3934/naco.2013.3.557

[10]

Luigi Ambrosio, Michele Miranda jr., Diego Pallara. Sets with finite perimeter in Wiener spaces, perimeter measure and boundary rectifiability. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 591-606. doi: 10.3934/dcds.2010.28.591

[11]

Arnaud Debussche, Sylvain De Moor, Julien Vovelle. Diffusion limit for the radiative transfer equation perturbed by a Wiener process. Kinetic & Related Models, 2015, 8 (3) : 467-492. doi: 10.3934/krm.2015.8.467

[12]

Wilfried Grecksch, Hannelore Lisei. Linear approximation of nonlinear Schrödinger equations driven by cylindrical Wiener processes. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3095-3114. doi: 10.3934/dcdsb.2016089

[13]

Alessia E. Kogoj, Ermanno Lanconelli, Giulio Tralli. Wiener-Landis criterion for Kolmogorov-type operators. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2467-2485. doi: 10.3934/dcds.2018102

[14]

Martin Swaczyna, Petr Volný. Uniform motions in central fields. Journal of Geometric Mechanics, 2017, 9 (1) : 91-130. doi: 10.3934/jgm.2017004

[15]

Mickaël Kourganoff. Uniform hyperbolicity in nonflat billiards. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1145-1160. doi: 10.3934/dcds.2018048

[16]

Younghun Hong, Changhun Yang. Uniform Strichartz estimates on the lattice. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3239-3264. doi: 10.3934/dcds.2019134

[17]

Ugur G. Abdulla. Wiener's criterion at $\infty$ for the heat equation and its measure-theoretical counterpart. Electronic Research Announcements, 2008, 15: 44-51. doi: 10.3934/era.2008.15.44

[18]

Matteo Novaga, Diego Pallara, Yannick Sire. A symmetry result for degenerate elliptic equations on the Wiener space with nonlinear boundary conditions and applications. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 815-831. doi: 10.3934/dcdss.2016030

[19]

Lan Wen. A uniform $C^1$ connecting lemma. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 257-265. doi: 10.3934/dcds.2002.8.257

[20]

Boris Hasselblatt, Yakov Pesin, Jörg Schmeling. Pointwise hyperbolicity implies uniform hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2819-2827. doi: 10.3934/dcds.2014.34.2819

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]