August  2013, 33(8): 3391-3405. doi: 10.3934/dcds.2013.33.3391

Optimal partial regularity results for nonlinear elliptic systems in Carnot groups

1. 

Department of Mathematics and Information Science, Zhangzhou Normal University, Zhangzhou 363000, Fujian, China

2. 

School of Mathematical Science, Xiamen University, Xiamen 361005, Fujian

Received  May 2012 Revised  July 2012 Published  January 2013

In this paper, we consider partial regularity for weak solutions of second-order nonlinear elliptic systems in Carnot groups. By the method of A-harmonic approximation, we establish optimal interior partial regularity of weak solutions to systems under controllable growth conditions with sub-quadratic growth in Carnot groups.
Citation: Shuhong Chen, Zhong Tan. Optimal partial regularity results for nonlinear elliptic systems in Carnot groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3391-3405. doi: 10.3934/dcds.2013.33.3391
References:
[1]

E.De Giorgi, "Frontiere orientate di misura minima,", Seminaro Math. Scuola Norm. Sup. Pisa, (1960). Google Scholar

[2]

E.De Giorgi, Un esempio di estremali discontinue per un problema variazionale di tipo ellittico,, Boll.Un. Mat. Ital., 4 (1968), 135. Google Scholar

[3]

M. Giaquinta and G. Modica, Regularity results for some classes of higher order non linear elliptic systems,, J.Reine Angew. Math., 311-312 (1979), 311. Google Scholar

[4]

P.A. Ivert, Regularit'dtsuntersuchungen von Lösungen ellipti-scher Sy steme von quasilinearen Differen-tialgleichungen zweiter Ordnung,, Manus. Math., 30 (1979), 53. doi: 10.1007/BF01305990. Google Scholar

[5]

C. Hamburger, Partial boundary regularity of solutions of nonlinear superelliptic systems,, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 8 (2007), 63. Google Scholar

[6]

L. Beck, Partial regularity for weak solutions of nonlinear elliptic systems: the subquadratic case,, Manus. Math., 123 (2007), 453. doi: 10.1007/s00229-007-0100-8. Google Scholar

[7]

L.Simon, "Lectures on Geometric Measure Theory,", Canberra: Australian National University Press, (1983). Google Scholar

[8]

W.K. Allard, On the first variation of a varifold,, Annals of Math., 95 (1972), 417. Google Scholar

[9]

L.Simon, "Theorems on Regularity and Singularity of Energy Minimizing Maps,", Basel, (). doi: 10.1007/978-3-0348-9193-6. Google Scholar

[10]

R.Schoen and K.Uhlenbeck, A regularity theorem for harmonic maps,, J.Diff.Geom., 17 (1982), 307. Google Scholar

[11]

F.Duzaar and K.Steffen, Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals,, J.Reine Angew. Math., 546 (2002), 73. doi: 10.1515/crll.2002.046. Google Scholar

[12]

F.Duzaar and J.F.Grotowski, Optimal interior partial regularity for nonlinear elliptic systems: The method of A-harmonic approximation,, Manus. Math., 103 (2000), 267. doi: 10.1007/s002290070007. Google Scholar

[13]

S. Chen and Z. Tan, The method of A-harmonic approximation and optimal interior interior partial regularity for nonlinear elliptic systems under the controllable growth condition,, J. Math. Anal. Appl., 335 (2007), 20. doi: 10.1016/j.jmaa.2007.01.042. Google Scholar

[14]

S. Chen and Z. Tan, Optimal interior partial regularity for nonlinear elliptic systems,, Discrete Cont Dyn-A, 27 (2010), 981. doi: 10.3934/dcds.2010.27.981. Google Scholar

[15]

F. Duzaar, J.F. Grotowski and M. Kronz, Regularity of almost minimizers of quasi-convex variational integrals with subquadratic growth,, Ann. Mat. Pura Appl., 184 (2005), 421. doi: 10.1007/s10231-004-0117-5. Google Scholar

[16]

F. Duzaar and G. Mingione, Regularity for degenerate elliptic problems via $p$-harmonic approximation,, Ann. Inst. Henri Poincaré, 21 (2004), 735. doi: 10.1016/j.anihpc.2003.09.003. Google Scholar

[17]

L. Capogna, Regularity for quasilinear equation and 1-quasiconformal maps in Carnot groups,, Math. Ann., 313 (1999), 263. doi: 10.1007/s002080050261. Google Scholar

[18]

L. Capogna and N.Garofalo, Regularity of minimizers of the calculus of variations in Carnot groups via hypoellipticity of systems of Hörmander type,, J. Eur. Math. Soc., 5 (2003), 1. doi: 10.1007/s100970200043. Google Scholar

[19]

E. Shores, Hypoellipticity for linear degenerate elliptic systems in Carnot groups and applications,, p27. arXiv: math. AP/ 0502569., (0502). Google Scholar

[20]

A. Föglein, Partial regularity results for subelliptic systems in the Heisenberg group,, Cacl Var Partial Dif., 32 (2008), 25. doi: 10.1007/s00526-007-0127-4. Google Scholar

[21]

J. Wang and P. Niu, Optimal Partial regularity for weak solutions of nonlinear sub-elliptic systems in Carnot groups,, Nonlinear Anal., 72 (2010), 4162. doi: 10.1016/j.na.2010.01.048. Google Scholar

[22]

G. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups,, Ark. Mat., 13 (1975), 161. Google Scholar

[23]

D. Jerison, The poincaré inequality for vector fields satisfying Hörmander's condition,, Duke Math. J., 53 (1986), 503. doi: 10.1215/S0012-7094-86-05329-9. Google Scholar

[24]

N. Garofalo and D. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces,, Comm. Pure Appl. Math., 49 (1996), 1081. doi: 10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO;2-A. Google Scholar

[25]

M. Carozza, N. Fusco and G. Mingione, Partial regularity of minimizers of quasiconvex integrals with subquadratic growth,, Ann. Mat. Pura Appl. IV. Ser., 175 (1998), 141. doi: 10.1007/BF01783679. Google Scholar

[26]

E. Acerbi and N. Fusco, Regularity for minimizers of non-quadratic functionals: the case $1 < p < 2$,, J. Math. Anal. Appl., 140 (1989), 115. doi: 10.1016/0022-247X(89)90098-X. Google Scholar

show all references

References:
[1]

E.De Giorgi, "Frontiere orientate di misura minima,", Seminaro Math. Scuola Norm. Sup. Pisa, (1960). Google Scholar

[2]

E.De Giorgi, Un esempio di estremali discontinue per un problema variazionale di tipo ellittico,, Boll.Un. Mat. Ital., 4 (1968), 135. Google Scholar

[3]

M. Giaquinta and G. Modica, Regularity results for some classes of higher order non linear elliptic systems,, J.Reine Angew. Math., 311-312 (1979), 311. Google Scholar

[4]

P.A. Ivert, Regularit'dtsuntersuchungen von Lösungen ellipti-scher Sy steme von quasilinearen Differen-tialgleichungen zweiter Ordnung,, Manus. Math., 30 (1979), 53. doi: 10.1007/BF01305990. Google Scholar

[5]

C. Hamburger, Partial boundary regularity of solutions of nonlinear superelliptic systems,, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 8 (2007), 63. Google Scholar

[6]

L. Beck, Partial regularity for weak solutions of nonlinear elliptic systems: the subquadratic case,, Manus. Math., 123 (2007), 453. doi: 10.1007/s00229-007-0100-8. Google Scholar

[7]

L.Simon, "Lectures on Geometric Measure Theory,", Canberra: Australian National University Press, (1983). Google Scholar

[8]

W.K. Allard, On the first variation of a varifold,, Annals of Math., 95 (1972), 417. Google Scholar

[9]

L.Simon, "Theorems on Regularity and Singularity of Energy Minimizing Maps,", Basel, (). doi: 10.1007/978-3-0348-9193-6. Google Scholar

[10]

R.Schoen and K.Uhlenbeck, A regularity theorem for harmonic maps,, J.Diff.Geom., 17 (1982), 307. Google Scholar

[11]

F.Duzaar and K.Steffen, Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals,, J.Reine Angew. Math., 546 (2002), 73. doi: 10.1515/crll.2002.046. Google Scholar

[12]

F.Duzaar and J.F.Grotowski, Optimal interior partial regularity for nonlinear elliptic systems: The method of A-harmonic approximation,, Manus. Math., 103 (2000), 267. doi: 10.1007/s002290070007. Google Scholar

[13]

S. Chen and Z. Tan, The method of A-harmonic approximation and optimal interior interior partial regularity for nonlinear elliptic systems under the controllable growth condition,, J. Math. Anal. Appl., 335 (2007), 20. doi: 10.1016/j.jmaa.2007.01.042. Google Scholar

[14]

S. Chen and Z. Tan, Optimal interior partial regularity for nonlinear elliptic systems,, Discrete Cont Dyn-A, 27 (2010), 981. doi: 10.3934/dcds.2010.27.981. Google Scholar

[15]

F. Duzaar, J.F. Grotowski and M. Kronz, Regularity of almost minimizers of quasi-convex variational integrals with subquadratic growth,, Ann. Mat. Pura Appl., 184 (2005), 421. doi: 10.1007/s10231-004-0117-5. Google Scholar

[16]

F. Duzaar and G. Mingione, Regularity for degenerate elliptic problems via $p$-harmonic approximation,, Ann. Inst. Henri Poincaré, 21 (2004), 735. doi: 10.1016/j.anihpc.2003.09.003. Google Scholar

[17]

L. Capogna, Regularity for quasilinear equation and 1-quasiconformal maps in Carnot groups,, Math. Ann., 313 (1999), 263. doi: 10.1007/s002080050261. Google Scholar

[18]

L. Capogna and N.Garofalo, Regularity of minimizers of the calculus of variations in Carnot groups via hypoellipticity of systems of Hörmander type,, J. Eur. Math. Soc., 5 (2003), 1. doi: 10.1007/s100970200043. Google Scholar

[19]

E. Shores, Hypoellipticity for linear degenerate elliptic systems in Carnot groups and applications,, p27. arXiv: math. AP/ 0502569., (0502). Google Scholar

[20]

A. Föglein, Partial regularity results for subelliptic systems in the Heisenberg group,, Cacl Var Partial Dif., 32 (2008), 25. doi: 10.1007/s00526-007-0127-4. Google Scholar

[21]

J. Wang and P. Niu, Optimal Partial regularity for weak solutions of nonlinear sub-elliptic systems in Carnot groups,, Nonlinear Anal., 72 (2010), 4162. doi: 10.1016/j.na.2010.01.048. Google Scholar

[22]

G. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups,, Ark. Mat., 13 (1975), 161. Google Scholar

[23]

D. Jerison, The poincaré inequality for vector fields satisfying Hörmander's condition,, Duke Math. J., 53 (1986), 503. doi: 10.1215/S0012-7094-86-05329-9. Google Scholar

[24]

N. Garofalo and D. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces,, Comm. Pure Appl. Math., 49 (1996), 1081. doi: 10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO;2-A. Google Scholar

[25]

M. Carozza, N. Fusco and G. Mingione, Partial regularity of minimizers of quasiconvex integrals with subquadratic growth,, Ann. Mat. Pura Appl. IV. Ser., 175 (1998), 141. doi: 10.1007/BF01783679. Google Scholar

[26]

E. Acerbi and N. Fusco, Regularity for minimizers of non-quadratic functionals: the case $1 < p < 2$,, J. Math. Anal. Appl., 140 (1989), 115. doi: 10.1016/0022-247X(89)90098-X. Google Scholar

[1]

Shenzhou Zheng, Laping Zhang, Zhaosheng Feng. Everywhere regularity for P-harmonic type systems under the subcritical growth. Communications on Pure & Applied Analysis, 2008, 7 (1) : 107-117. doi: 10.3934/cpaa.2008.7.107

[2]

Paulo Rabelo. Elliptic systems involving critical growth in dimension two. Communications on Pure & Applied Analysis, 2009, 8 (6) : 2013-2035. doi: 10.3934/cpaa.2009.8.2013

[3]

Zhaoli Liu, Jiabao Su. Solutions of some nonlinear elliptic problems with perturbation terms of arbitrary growth. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 617-634. doi: 10.3934/dcds.2004.10.617

[4]

Tian Xiang. Dynamics in a parabolic-elliptic chemotaxis system with growth source and nonlinear secretion. Communications on Pure & Applied Analysis, 2019, 18 (1) : 255-284. doi: 10.3934/cpaa.2019014

[5]

Yilong Wang, Xuande Zhang. On a parabolic-elliptic chemotaxis-growth system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 321-328. doi: 10.3934/dcdss.2020018

[6]

Manassés de Souza. On a singular Hamiltonian elliptic systems involving critical growth in dimension two. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1859-1874. doi: 10.3934/cpaa.2012.11.1859

[7]

VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $ p(x) $-growth and generalized Robin boundary value condition. Communications on Pure & Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003

[8]

Van Cyr, Bryna Kra. The automorphism group of a minimal shift of stretched exponential growth. Journal of Modern Dynamics, 2016, 10: 483-495. doi: 10.3934/jmd.2016.10.483

[9]

Jun Wang, Junxiang Xu, Fubao Zhang. Homoclinic orbits for superlinear Hamiltonian systems without Ambrosetti-Rabinowitz growth condition. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1241-1257. doi: 10.3934/dcds.2010.27.1241

[10]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Regularity of global attractors for reaction-diffusion systems with no more than quadratic growth. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1899-1908. doi: 10.3934/dcdsb.2017113

[11]

Vicenţiu D. Rădulescu. Noncoercive elliptic equations with subcritical growth. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 857-864. doi: 10.3934/dcdss.2012.5.857

[12]

Shenzhou Zheng, Xueliang Zheng, Zhaosheng Feng. Optimal regularity for $A$-harmonic type equations under the natural growth. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 669-685. doi: 10.3934/dcdsb.2011.16.669

[13]

Casey Jao. Energy-critical NLS with potentials of quadratic growth. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 563-587. doi: 10.3934/dcds.2018025

[14]

Luis Barreira, Claudia Valls. Quadratic Lyapunov sequences and arbitrary growth rates. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 63-74. doi: 10.3934/dcds.2010.26.63

[15]

Giuliano Lazzaroni, Rodica Toader. Some remarks on the viscous approximation of crack growth. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 131-146. doi: 10.3934/dcdss.2013.6.131

[16]

R.G. Duran, J.I. Etcheverry, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 497-506. doi: 10.3934/dcds.1998.4.497

[17]

Sami Aouaoui. On some local-nonlocal elliptic equation involving nonlinear terms with exponential growth. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1767-1784. doi: 10.3934/cpaa.2017086

[18]

Claudianor O. Alves, J. V. Gonçalves, Olimpio Hiroshi Miyagaki. Remarks on multiplicity of positive solutions of nonlinear elliptic equations in $IR^N$ with critical growth. Conference Publications, 1998, 1998 (Special) : 51-57. doi: 10.3934/proc.1998.1998.51

[19]

Li Yin, Jinghua Yao, Qihu Zhang, Chunshan Zhao. Multiple solutions with constant sign of a Dirichlet problem for a class of elliptic systems with variable exponent growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2207-2226. doi: 10.3934/dcds.2017095

[20]

Ali Maalaoui. A note on commutators of the fractional sub-Laplacian on Carnot groups. Communications on Pure & Applied Analysis, 2019, 18 (1) : 435-453. doi: 10.3934/cpaa.2019022

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]