January  2013, 33(1): 335-344. doi: 10.3934/dcds.2013.33.335

Bifurcation results on positive solutions of an indefinite nonlinear elliptic system

1. 

Department of Mathematics & Statistics, Utah State University, Logan, UT 84322, United States

2. 

Department of Mathematics and Statistics, Utah State University, Logan, UT 84322

Received  May 2011 Revised  October 2011 Published  September 2012

Consider the following nonlinear elliptic system \begin{equation*} \left\{\begin{array}{ll} -\Delta u - u=\mu_1u^3+\beta uv^2,\ & \hbox{in}\ \Omega\\ -\Delta v - v= \mu_2v^3+\beta vu^2,\ & \hbox{in}\ \Omega\\ u,v>0\ \hbox{in}\ \Omega, \ u=v=0,\ & \hbox{on}\ \partial\Omega, \end{array} \right. \end{equation*}where $\mu_1,\mu_2>0$ are constants and $\Omega$ is a smooth bounded domain in $\mathbb{R}^N$ for $N\leq3$. We study the existence and non-existence of positive solutions and give bifurcation results in terms of the coupling constant $\beta$.
Citation: Rushun Tian, Zhi-Qiang Wang. Bifurcation results on positive solutions of an indefinite nonlinear elliptic system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 335-344. doi: 10.3934/dcds.2013.33.335
References:
[1]

A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations,, C. R. Math. Acad. Sci. Paris, 342 (2006), 453. doi: 10.1016/j.crma.2006.01.024. Google Scholar

[2]

A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations,, J. Lond. Math. Soc., 75 (2007), 67. doi: 10.1112/jlms/jdl020. Google Scholar

[3]

T. Bartsch, N. Dancer and Z. Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branchesof positive solutions for a nonlinear elliptic system,, Calculus of Variations and Partial Differential Equations, 37 (2010), 3. Google Scholar

[4]

T. Bartsch and Z. Q. Wang, Note on ground states of nonlinear Schrödinger systems,, J. Part. Diff. Equ., 19 (2006), 200. Google Scholar

[5]

T. Bartsch, Z. Q. Wang and J. Wei, Bound states for a coupled Schrödinger system,, J. Fixed Point Theory Appl., 2 (2007), 353. doi: 10.1007/s11784-007-0033-6. Google Scholar

[6]

M. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Funct. Anal., 8 (1971), 321. doi: 10.1016/0022-1236(71)90015-2. Google Scholar

[7]

E. N. Dancer, Boundary-value problems for ordinary differential equations on infinite intervals,, Proc. London Math. Soc. (3), 30 (1975), 76. doi: 10.1112/plms/s3-30.1.76. Google Scholar

[8]

E. N. Dancer, J. C. Wei and T. Weth, A priori bounds versus multiple existence of positivesolutions for a nonlinear Schrödinger system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953. Google Scholar

[9]

B. D. Esry, C. H. Greene, J. P. Burke Jr and J. L. Bohn, Hartree-Fock theory for double condensates,, Phys. Rev. Lett., 78 (1997), 3594. doi: 10.1103/PhysRevLett.78.3594. Google Scholar

[10]

H. Kielhöfer, "Bifurcation Theory,", Springer-Verlag, (2004). Google Scholar

[11]

T. C. Lin and J. C. Wei, Ground state of $N$ coupled nonlinear Schrödinger equationsin $\mathbbR^n, n\leq3$,, Comm. Math. Phys., 255 (2005), 629. doi: 10.1007/s00220-005-1313-x. Google Scholar

[12]

T. C. Lin and J. C. Wei, Spikes in two coupled nonlinear Schrödinger equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 403. Google Scholar

[13]

Z. L. Liu and Z. Q. Wang, Multiple bound states of nonlinear Schrödinger systems,, Comm. Math. Phy., 282 (2008), 721. doi: 10.1007/s00220-008-0546-x. Google Scholar

[14]

Z. L. Liu and Z. Q. Wang, Ground states and bound states of a nonlinear Schrödinger system,, Adv. Nonlinear Studies, 10 (2010), 175. Google Scholar

[15]

L. A. Maia, E. Montefusco and B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger system,, J. Diff. Equ., 299 (2006), 743. doi: 10.1016/j.jde.2006.07.002. Google Scholar

[16]

J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", Springer-Verlag, (1989). Google Scholar

[17]

E. Montefusco, B. Pellacci and M. Squassina, Semiclassical states for weakly coupled nonlinear Schrödinger systems,, J. Eur. Math. Soc., 10 (2008), 41. Google Scholar

[18]

B. Noris and M. Ramos, Existence and bounds of positive solutions for a nonlinear Schrödinger system,, Proceedings of the AMS., 138 (2010), 1681. doi: 10.1090/S0002-9939-10-10231-7. Google Scholar

[19]

B. Noris, S. Tavares, H. Terracini and G. Verzini, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition,, Comm. Pure and Appl. Math., 63 (2010), 267. Google Scholar

[20]

S. Oruganti, J. P. Shi and R. Shivaji, Diffusive logistic equation with constant yield harvesting,I: steady states,, Transactions of the AMS., 354 (2002), 3601. Google Scholar

[21]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problem,, Journal of functional Analysis, 7 (1971), 487. doi: 10.1016/0022-1236(71)90030-9. Google Scholar

[22]

S. Sirakov, Least energy solitary waves for a system of nonlinear Schröinger equations in $\mathbbR^n$,, Comm. Math. Phys., 271 (2007), 199. doi: 10.1007/s00220-006-0179-x. Google Scholar

[23]

S. Terracini and G. Verzini, Multipulse Phase in $k$-mixtures of Bose-Einstein condenstates,, Arch. Rat. Mech. Anal., 194 (2009), 717. doi: 10.1007/s00205-008-0172-y. Google Scholar

[24]

R. Tian and Z. Q. Wang, Multiple solitary wave solutions of nonlinear Schrödinger systems,, Topo. Meth. Non. Anal., 37 (2011), 203. Google Scholar

[25]

J. Wei and T. Weth, Nonradial symmetric bound states fora system of two coupled Schrödinger equations,, Rend. Lincei Mat. Appl., 18 (2007), 279. Google Scholar

[26]

J. Wei and T. Weth, Radial solutions and phase separation in a system of twocoupled Schrödinger equations,, Arch. Rat. Mech. Anal., 190 (2008), 83. doi: 10.1007/s00205-008-0121-9. Google Scholar

show all references

References:
[1]

A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations,, C. R. Math. Acad. Sci. Paris, 342 (2006), 453. doi: 10.1016/j.crma.2006.01.024. Google Scholar

[2]

A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations,, J. Lond. Math. Soc., 75 (2007), 67. doi: 10.1112/jlms/jdl020. Google Scholar

[3]

T. Bartsch, N. Dancer and Z. Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branchesof positive solutions for a nonlinear elliptic system,, Calculus of Variations and Partial Differential Equations, 37 (2010), 3. Google Scholar

[4]

T. Bartsch and Z. Q. Wang, Note on ground states of nonlinear Schrödinger systems,, J. Part. Diff. Equ., 19 (2006), 200. Google Scholar

[5]

T. Bartsch, Z. Q. Wang and J. Wei, Bound states for a coupled Schrödinger system,, J. Fixed Point Theory Appl., 2 (2007), 353. doi: 10.1007/s11784-007-0033-6. Google Scholar

[6]

M. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Funct. Anal., 8 (1971), 321. doi: 10.1016/0022-1236(71)90015-2. Google Scholar

[7]

E. N. Dancer, Boundary-value problems for ordinary differential equations on infinite intervals,, Proc. London Math. Soc. (3), 30 (1975), 76. doi: 10.1112/plms/s3-30.1.76. Google Scholar

[8]

E. N. Dancer, J. C. Wei and T. Weth, A priori bounds versus multiple existence of positivesolutions for a nonlinear Schrödinger system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953. Google Scholar

[9]

B. D. Esry, C. H. Greene, J. P. Burke Jr and J. L. Bohn, Hartree-Fock theory for double condensates,, Phys. Rev. Lett., 78 (1997), 3594. doi: 10.1103/PhysRevLett.78.3594. Google Scholar

[10]

H. Kielhöfer, "Bifurcation Theory,", Springer-Verlag, (2004). Google Scholar

[11]

T. C. Lin and J. C. Wei, Ground state of $N$ coupled nonlinear Schrödinger equationsin $\mathbbR^n, n\leq3$,, Comm. Math. Phys., 255 (2005), 629. doi: 10.1007/s00220-005-1313-x. Google Scholar

[12]

T. C. Lin and J. C. Wei, Spikes in two coupled nonlinear Schrödinger equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 403. Google Scholar

[13]

Z. L. Liu and Z. Q. Wang, Multiple bound states of nonlinear Schrödinger systems,, Comm. Math. Phy., 282 (2008), 721. doi: 10.1007/s00220-008-0546-x. Google Scholar

[14]

Z. L. Liu and Z. Q. Wang, Ground states and bound states of a nonlinear Schrödinger system,, Adv. Nonlinear Studies, 10 (2010), 175. Google Scholar

[15]

L. A. Maia, E. Montefusco and B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger system,, J. Diff. Equ., 299 (2006), 743. doi: 10.1016/j.jde.2006.07.002. Google Scholar

[16]

J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", Springer-Verlag, (1989). Google Scholar

[17]

E. Montefusco, B. Pellacci and M. Squassina, Semiclassical states for weakly coupled nonlinear Schrödinger systems,, J. Eur. Math. Soc., 10 (2008), 41. Google Scholar

[18]

B. Noris and M. Ramos, Existence and bounds of positive solutions for a nonlinear Schrödinger system,, Proceedings of the AMS., 138 (2010), 1681. doi: 10.1090/S0002-9939-10-10231-7. Google Scholar

[19]

B. Noris, S. Tavares, H. Terracini and G. Verzini, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition,, Comm. Pure and Appl. Math., 63 (2010), 267. Google Scholar

[20]

S. Oruganti, J. P. Shi and R. Shivaji, Diffusive logistic equation with constant yield harvesting,I: steady states,, Transactions of the AMS., 354 (2002), 3601. Google Scholar

[21]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problem,, Journal of functional Analysis, 7 (1971), 487. doi: 10.1016/0022-1236(71)90030-9. Google Scholar

[22]

S. Sirakov, Least energy solitary waves for a system of nonlinear Schröinger equations in $\mathbbR^n$,, Comm. Math. Phys., 271 (2007), 199. doi: 10.1007/s00220-006-0179-x. Google Scholar

[23]

S. Terracini and G. Verzini, Multipulse Phase in $k$-mixtures of Bose-Einstein condenstates,, Arch. Rat. Mech. Anal., 194 (2009), 717. doi: 10.1007/s00205-008-0172-y. Google Scholar

[24]

R. Tian and Z. Q. Wang, Multiple solitary wave solutions of nonlinear Schrödinger systems,, Topo. Meth. Non. Anal., 37 (2011), 203. Google Scholar

[25]

J. Wei and T. Weth, Nonradial symmetric bound states fora system of two coupled Schrödinger equations,, Rend. Lincei Mat. Appl., 18 (2007), 279. Google Scholar

[26]

J. Wei and T. Weth, Radial solutions and phase separation in a system of twocoupled Schrödinger equations,, Arch. Rat. Mech. Anal., 190 (2008), 83. doi: 10.1007/s00205-008-0121-9. Google Scholar

[1]

Guglielmo Feltrin. Positive subharmonic solutions to superlinear ODEs with indefinite weight. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 257-277. doi: 10.3934/dcdss.2018014

[2]

Alberto Boscaggin, Maurizio Garrione. Positive solutions to indefinite Neumann problems when the weight has positive average. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5231-5244. doi: 10.3934/dcds.2016028

[3]

Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Positive and nodal solutions for parametric nonlinear Robin problems with indefinite potential. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6133-6166. doi: 10.3934/dcds.2016068

[4]

M. Gaudenzi, P. Habets, F. Zanolin. Positive solutions of superlinear boundary value problems with singular indefinite weight. Communications on Pure & Applied Analysis, 2003, 2 (3) : 411-423. doi: 10.3934/cpaa.2003.2.411

[5]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš. Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2589-2618. doi: 10.3934/dcds.2017111

[6]

Vladimir Lubyshev. Precise range of the existence of positive solutions of a nonlinear, indefinite in sign Neumann problem. Communications on Pure & Applied Analysis, 2009, 8 (3) : 999-1018. doi: 10.3934/cpaa.2009.8.999

[7]

Guglielmo Feltrin. Existence of positive solutions of a superlinear boundary value problem with indefinite weight. Conference Publications, 2015, 2015 (special) : 436-445. doi: 10.3934/proc.2015.0436

[8]

Zhujun Jing, K.Y. Chan, Dashun Xu, Hongjun Cao. Bifurcations of periodic solutions and chaos in Josephson system. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 573-592. doi: 10.3934/dcds.2001.7.573

[9]

Santiago Cano-Casanova. Bifurcation to positive solutions in BVPs of logistic type with nonlinear indefinite mixed boundary conditions. Conference Publications, 2013, 2013 (special) : 95-104. doi: 10.3934/proc.2013.2013.95

[10]

Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079

[11]

Yuxia Guo, Jianjun Nie. Classification for positive solutions of degenerate elliptic system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1457-1475. doi: 10.3934/dcds.2018130

[12]

Guowei Dai, Rushun Tian, Zhitao Zhang. Global bifurcations and a priori bounds of positive solutions for coupled nonlinear Schrödinger Systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1905-1927. doi: 10.3934/dcdss.2019125

[13]

Andrea Tellini. Imperfect bifurcations via topological methods in superlinear indefinite problems. Conference Publications, 2015, 2015 (special) : 1050-1059. doi: 10.3934/proc.2015.1050

[14]

Jiaquan Liu, Yuxia Guo, Pingan Zeng. Relationship of the morse index and the $L^\infty$ bound of solutions for a strongly indefinite differential superlinear system. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 107-119. doi: 10.3934/dcds.2006.16.107

[15]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations & Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83

[16]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part I: The linearized system.. Evolution Equations & Control Theory, 2014, 3 (1) : 59-82. doi: 10.3934/eect.2014.3.59

[17]

Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. I. Invariant torus and its normal hyperbolicity. Journal of Geometric Mechanics, 2012, 4 (4) : 443-467. doi: 10.3934/jgm.2012.4.443

[18]

Jibin Li. Bifurcations and exact travelling wave solutions of the generalized two-component Hunter-Saxton system. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1719-1729. doi: 10.3934/dcdsb.2014.19.1719

[19]

Yayun Li, Yutian Lei. On existence and nonexistence of positive solutions of an elliptic system with coupled terms. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1749-1764. doi: 10.3934/cpaa.2018083

[20]

Zhanping Liang, Yuanmin Song, Fuyi Li. Positive ground state solutions of a quadratically coupled schrödinger system. Communications on Pure & Applied Analysis, 2017, 16 (3) : 999-1012. doi: 10.3934/cpaa.2017048

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]