# American Institute of Mathematical Sciences

January  2013, 33(1): 335-344. doi: 10.3934/dcds.2013.33.335

## Bifurcation results on positive solutions of an indefinite nonlinear elliptic system

 1 Department of Mathematics & Statistics, Utah State University, Logan, UT 84322, United States 2 Department of Mathematics and Statistics, Utah State University, Logan, UT 84322

Received  May 2011 Revised  October 2011 Published  September 2012

Consider the following nonlinear elliptic system \begin{equation*} \left\{\begin{array}{ll} -\Delta u - u=\mu_1u^3+\beta uv^2,\ & \hbox{in}\ \Omega\\ -\Delta v - v= \mu_2v^3+\beta vu^2,\ & \hbox{in}\ \Omega\\ u,v>0\ \hbox{in}\ \Omega, \ u=v=0,\ & \hbox{on}\ \partial\Omega, \end{array} \right. \end{equation*}where $\mu_1,\mu_2>0$ are constants and $\Omega$ is a smooth bounded domain in $\mathbb{R}^N$ for $N\leq3$. We study the existence and non-existence of positive solutions and give bifurcation results in terms of the coupling constant $\beta$.
Citation: Rushun Tian, Zhi-Qiang Wang. Bifurcation results on positive solutions of an indefinite nonlinear elliptic system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 335-344. doi: 10.3934/dcds.2013.33.335
##### References:
 [1] A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations,, C. R. Math. Acad. Sci. Paris, 342 (2006), 453. doi: 10.1016/j.crma.2006.01.024. Google Scholar [2] A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations,, J. Lond. Math. Soc., 75 (2007), 67. doi: 10.1112/jlms/jdl020. Google Scholar [3] T. Bartsch, N. Dancer and Z. Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branchesof positive solutions for a nonlinear elliptic system,, Calculus of Variations and Partial Differential Equations, 37 (2010), 3. Google Scholar [4] T. Bartsch and Z. Q. Wang, Note on ground states of nonlinear Schrödinger systems,, J. Part. Diff. Equ., 19 (2006), 200. Google Scholar [5] T. Bartsch, Z. Q. Wang and J. Wei, Bound states for a coupled Schrödinger system,, J. Fixed Point Theory Appl., 2 (2007), 353. doi: 10.1007/s11784-007-0033-6. Google Scholar [6] M. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Funct. Anal., 8 (1971), 321. doi: 10.1016/0022-1236(71)90015-2. Google Scholar [7] E. N. Dancer, Boundary-value problems for ordinary differential equations on infinite intervals,, Proc. London Math. Soc. (3), 30 (1975), 76. doi: 10.1112/plms/s3-30.1.76. Google Scholar [8] E. N. Dancer, J. C. Wei and T. Weth, A priori bounds versus multiple existence of positivesolutions for a nonlinear Schrödinger system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953. Google Scholar [9] B. D. Esry, C. H. Greene, J. P. Burke Jr and J. L. Bohn, Hartree-Fock theory for double condensates,, Phys. Rev. Lett., 78 (1997), 3594. doi: 10.1103/PhysRevLett.78.3594. Google Scholar [10] H. Kielhöfer, "Bifurcation Theory,", Springer-Verlag, (2004). Google Scholar [11] T. C. Lin and J. C. Wei, Ground state of $N$ coupled nonlinear Schrödinger equationsin $\mathbbR^n, n\leq3$,, Comm. Math. Phys., 255 (2005), 629. doi: 10.1007/s00220-005-1313-x. Google Scholar [12] T. C. Lin and J. C. Wei, Spikes in two coupled nonlinear Schrödinger equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 403. Google Scholar [13] Z. L. Liu and Z. Q. Wang, Multiple bound states of nonlinear Schrödinger systems,, Comm. Math. Phy., 282 (2008), 721. doi: 10.1007/s00220-008-0546-x. Google Scholar [14] Z. L. Liu and Z. Q. Wang, Ground states and bound states of a nonlinear Schrödinger system,, Adv. Nonlinear Studies, 10 (2010), 175. Google Scholar [15] L. A. Maia, E. Montefusco and B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger system,, J. Diff. Equ., 299 (2006), 743. doi: 10.1016/j.jde.2006.07.002. Google Scholar [16] J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", Springer-Verlag, (1989). Google Scholar [17] E. Montefusco, B. Pellacci and M. Squassina, Semiclassical states for weakly coupled nonlinear Schrödinger systems,, J. Eur. Math. Soc., 10 (2008), 41. Google Scholar [18] B. Noris and M. Ramos, Existence and bounds of positive solutions for a nonlinear Schrödinger system,, Proceedings of the AMS., 138 (2010), 1681. doi: 10.1090/S0002-9939-10-10231-7. Google Scholar [19] B. Noris, S. Tavares, H. Terracini and G. Verzini, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition,, Comm. Pure and Appl. Math., 63 (2010), 267. Google Scholar [20] S. Oruganti, J. P. Shi and R. Shivaji, Diffusive logistic equation with constant yield harvesting,I: steady states,, Transactions of the AMS., 354 (2002), 3601. Google Scholar [21] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problem,, Journal of functional Analysis, 7 (1971), 487. doi: 10.1016/0022-1236(71)90030-9. Google Scholar [22] S. Sirakov, Least energy solitary waves for a system of nonlinear Schröinger equations in $\mathbbR^n$,, Comm. Math. Phys., 271 (2007), 199. doi: 10.1007/s00220-006-0179-x. Google Scholar [23] S. Terracini and G. Verzini, Multipulse Phase in $k$-mixtures of Bose-Einstein condenstates,, Arch. Rat. Mech. Anal., 194 (2009), 717. doi: 10.1007/s00205-008-0172-y. Google Scholar [24] R. Tian and Z. Q. Wang, Multiple solitary wave solutions of nonlinear Schrödinger systems,, Topo. Meth. Non. Anal., 37 (2011), 203. Google Scholar [25] J. Wei and T. Weth, Nonradial symmetric bound states fora system of two coupled Schrödinger equations,, Rend. Lincei Mat. Appl., 18 (2007), 279. Google Scholar [26] J. Wei and T. Weth, Radial solutions and phase separation in a system of twocoupled Schrödinger equations,, Arch. Rat. Mech. Anal., 190 (2008), 83. doi: 10.1007/s00205-008-0121-9. Google Scholar

show all references

##### References:
 [1] A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations,, C. R. Math. Acad. Sci. Paris, 342 (2006), 453. doi: 10.1016/j.crma.2006.01.024. Google Scholar [2] A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations,, J. Lond. Math. Soc., 75 (2007), 67. doi: 10.1112/jlms/jdl020. Google Scholar [3] T. Bartsch, N. Dancer and Z. Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branchesof positive solutions for a nonlinear elliptic system,, Calculus of Variations and Partial Differential Equations, 37 (2010), 3. Google Scholar [4] T. Bartsch and Z. Q. Wang, Note on ground states of nonlinear Schrödinger systems,, J. Part. Diff. Equ., 19 (2006), 200. Google Scholar [5] T. Bartsch, Z. Q. Wang and J. Wei, Bound states for a coupled Schrödinger system,, J. Fixed Point Theory Appl., 2 (2007), 353. doi: 10.1007/s11784-007-0033-6. Google Scholar [6] M. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Funct. Anal., 8 (1971), 321. doi: 10.1016/0022-1236(71)90015-2. Google Scholar [7] E. N. Dancer, Boundary-value problems for ordinary differential equations on infinite intervals,, Proc. London Math. Soc. (3), 30 (1975), 76. doi: 10.1112/plms/s3-30.1.76. Google Scholar [8] E. N. Dancer, J. C. Wei and T. Weth, A priori bounds versus multiple existence of positivesolutions for a nonlinear Schrödinger system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953. Google Scholar [9] B. D. Esry, C. H. Greene, J. P. Burke Jr and J. L. Bohn, Hartree-Fock theory for double condensates,, Phys. Rev. Lett., 78 (1997), 3594. doi: 10.1103/PhysRevLett.78.3594. Google Scholar [10] H. Kielhöfer, "Bifurcation Theory,", Springer-Verlag, (2004). Google Scholar [11] T. C. Lin and J. C. Wei, Ground state of $N$ coupled nonlinear Schrödinger equationsin $\mathbbR^n, n\leq3$,, Comm. Math. Phys., 255 (2005), 629. doi: 10.1007/s00220-005-1313-x. Google Scholar [12] T. C. Lin and J. C. Wei, Spikes in two coupled nonlinear Schrödinger equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 403. Google Scholar [13] Z. L. Liu and Z. Q. Wang, Multiple bound states of nonlinear Schrödinger systems,, Comm. Math. Phy., 282 (2008), 721. doi: 10.1007/s00220-008-0546-x. Google Scholar [14] Z. L. Liu and Z. Q. Wang, Ground states and bound states of a nonlinear Schrödinger system,, Adv. Nonlinear Studies, 10 (2010), 175. Google Scholar [15] L. A. Maia, E. Montefusco and B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger system,, J. Diff. Equ., 299 (2006), 743. doi: 10.1016/j.jde.2006.07.002. Google Scholar [16] J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", Springer-Verlag, (1989). Google Scholar [17] E. Montefusco, B. Pellacci and M. Squassina, Semiclassical states for weakly coupled nonlinear Schrödinger systems,, J. Eur. Math. Soc., 10 (2008), 41. Google Scholar [18] B. Noris and M. Ramos, Existence and bounds of positive solutions for a nonlinear Schrödinger system,, Proceedings of the AMS., 138 (2010), 1681. doi: 10.1090/S0002-9939-10-10231-7. Google Scholar [19] B. Noris, S. Tavares, H. Terracini and G. Verzini, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition,, Comm. Pure and Appl. Math., 63 (2010), 267. Google Scholar [20] S. Oruganti, J. P. Shi and R. Shivaji, Diffusive logistic equation with constant yield harvesting,I: steady states,, Transactions of the AMS., 354 (2002), 3601. Google Scholar [21] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problem,, Journal of functional Analysis, 7 (1971), 487. doi: 10.1016/0022-1236(71)90030-9. Google Scholar [22] S. Sirakov, Least energy solitary waves for a system of nonlinear Schröinger equations in $\mathbbR^n$,, Comm. Math. Phys., 271 (2007), 199. doi: 10.1007/s00220-006-0179-x. Google Scholar [23] S. Terracini and G. Verzini, Multipulse Phase in $k$-mixtures of Bose-Einstein condenstates,, Arch. Rat. Mech. Anal., 194 (2009), 717. doi: 10.1007/s00205-008-0172-y. Google Scholar [24] R. Tian and Z. Q. Wang, Multiple solitary wave solutions of nonlinear Schrödinger systems,, Topo. Meth. Non. Anal., 37 (2011), 203. Google Scholar [25] J. Wei and T. Weth, Nonradial symmetric bound states fora system of two coupled Schrödinger equations,, Rend. Lincei Mat. Appl., 18 (2007), 279. Google Scholar [26] J. Wei and T. Weth, Radial solutions and phase separation in a system of twocoupled Schrödinger equations,, Arch. Rat. Mech. Anal., 190 (2008), 83. doi: 10.1007/s00205-008-0121-9. Google Scholar
 [1] Guglielmo Feltrin. Positive subharmonic solutions to superlinear ODEs with indefinite weight. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 257-277. doi: 10.3934/dcdss.2018014 [2] Alberto Boscaggin, Maurizio Garrione. Positive solutions to indefinite Neumann problems when the weight has positive average. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5231-5244. doi: 10.3934/dcds.2016028 [3] Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Positive and nodal solutions for parametric nonlinear Robin problems with indefinite potential. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6133-6166. doi: 10.3934/dcds.2016068 [4] M. Gaudenzi, P. Habets, F. Zanolin. Positive solutions of superlinear boundary value problems with singular indefinite weight. Communications on Pure & Applied Analysis, 2003, 2 (3) : 411-423. doi: 10.3934/cpaa.2003.2.411 [5] Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš. Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2589-2618. doi: 10.3934/dcds.2017111 [6] Vladimir Lubyshev. Precise range of the existence of positive solutions of a nonlinear, indefinite in sign Neumann problem. Communications on Pure & Applied Analysis, 2009, 8 (3) : 999-1018. doi: 10.3934/cpaa.2009.8.999 [7] Guglielmo Feltrin. Existence of positive solutions of a superlinear boundary value problem with indefinite weight. Conference Publications, 2015, 2015 (special) : 436-445. doi: 10.3934/proc.2015.0436 [8] Zhujun Jing, K.Y. Chan, Dashun Xu, Hongjun Cao. Bifurcations of periodic solutions and chaos in Josephson system. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 573-592. doi: 10.3934/dcds.2001.7.573 [9] Santiago Cano-Casanova. Bifurcation to positive solutions in BVPs of logistic type with nonlinear indefinite mixed boundary conditions. Conference Publications, 2013, 2013 (special) : 95-104. doi: 10.3934/proc.2013.2013.95 [10] Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079 [11] Guowei Dai, Rushun Tian, Zhitao Zhang. Global bifurcations and a priori bounds of positive solutions for coupled nonlinear Schrödinger Systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1905-1927. doi: 10.3934/dcdss.2019125 [12] Yuxia Guo, Jianjun Nie. Classification for positive solutions of degenerate elliptic system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1457-1475. doi: 10.3934/dcds.2018130 [13] Andrea Tellini. Imperfect bifurcations via topological methods in superlinear indefinite problems. Conference Publications, 2015, 2015 (special) : 1050-1059. doi: 10.3934/proc.2015.1050 [14] Jiaquan Liu, Yuxia Guo, Pingan Zeng. Relationship of the morse index and the $L^\infty$ bound of solutions for a strongly indefinite differential superlinear system. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 107-119. doi: 10.3934/dcds.2006.16.107 [15] Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations & Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83 [16] Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part I: The linearized system.. Evolution Equations & Control Theory, 2014, 3 (1) : 59-82. doi: 10.3934/eect.2014.3.59 [17] Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. I. Invariant torus and its normal hyperbolicity. Journal of Geometric Mechanics, 2012, 4 (4) : 443-467. doi: 10.3934/jgm.2012.4.443 [18] Jibin Li. Bifurcations and exact travelling wave solutions of the generalized two-component Hunter-Saxton system. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1719-1729. doi: 10.3934/dcdsb.2014.19.1719 [19] Yayun Li, Yutian Lei. On existence and nonexistence of positive solutions of an elliptic system with coupled terms. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1749-1764. doi: 10.3934/cpaa.2018083 [20] Zhanping Liang, Yuanmin Song, Fuyi Li. Positive ground state solutions of a quadratically coupled schrödinger system. Communications on Pure & Applied Analysis, 2017, 16 (3) : 999-1012. doi: 10.3934/cpaa.2017048

2018 Impact Factor: 1.143