August  2013, 33(8): 3321-3327. doi: 10.3934/dcds.2013.33.3321

No entire function with real multipliers in class $\mathcal{S}$

1. 

Faculty of Mathematics and Information Science, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland

Received  July 2012 Revised  August 2012 Published  January 2013

We prove that there is no entire transcendental function in class $\mathcal{S}$ with real multipliers of all repelling periodic orbits.
Citation: Agnieszka Badeńska. No entire function with real multipliers in class $\mathcal{S}$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3321-3327. doi: 10.3934/dcds.2013.33.3321
References:
[1]

A. Badeńska, Measure rigidity for some transcendental meromorphic functions,, Discrete Contin. Dyn. Syst., 32 (2012), 2375. doi: 10.3934/dcds.2012.32.2375.

[2]

W. Bergweiler, Iteration of meromorphic functions,, Bull. Amer. Math. Soc., 29 (1993), 151. doi: 10.1090/S0273-0979-1993-00432-4.

[3]

A. Eremenko and S. van Strien, Rational maps with real multipliers,, Trans. Amer. Math. Soc., 363 (2011), 6453. doi: 10.1090/S0002-9947-2011-05308-0.

[4]

P. Fatou, Sur les équations fonctionnelles,, Bull. Soc. Math. France, 48 (1920), 208.

[5]

V. Mayer, Comparing measures and invariant line fields,, Ergodic Theory Dynam. Systems, 22 (2002), 555. doi: 10.1017/S0143385702000275.

[6]

L. Rempe and S. van Strien, Absence of line fields and Mañé's theorem for nonrecurrent transcendental functions,, Trans. Amer. Math. Soc., 363 (2011), 203. doi: 10.1090/S0002-9947-2010-05125-6.

[7]

G. M. Stallard, The Hausdorff dimension of Julia sets of entire functions. II,, Math. Proc. Cambridge Philos. Soc., 119 (1996), 513. doi: 10.1017/S0305004100074387.

show all references

References:
[1]

A. Badeńska, Measure rigidity for some transcendental meromorphic functions,, Discrete Contin. Dyn. Syst., 32 (2012), 2375. doi: 10.3934/dcds.2012.32.2375.

[2]

W. Bergweiler, Iteration of meromorphic functions,, Bull. Amer. Math. Soc., 29 (1993), 151. doi: 10.1090/S0273-0979-1993-00432-4.

[3]

A. Eremenko and S. van Strien, Rational maps with real multipliers,, Trans. Amer. Math. Soc., 363 (2011), 6453. doi: 10.1090/S0002-9947-2011-05308-0.

[4]

P. Fatou, Sur les équations fonctionnelles,, Bull. Soc. Math. France, 48 (1920), 208.

[5]

V. Mayer, Comparing measures and invariant line fields,, Ergodic Theory Dynam. Systems, 22 (2002), 555. doi: 10.1017/S0143385702000275.

[6]

L. Rempe and S. van Strien, Absence of line fields and Mañé's theorem for nonrecurrent transcendental functions,, Trans. Amer. Math. Soc., 363 (2011), 203. doi: 10.1090/S0002-9947-2010-05125-6.

[7]

G. M. Stallard, The Hausdorff dimension of Julia sets of entire functions. II,, Math. Proc. Cambridge Philos. Soc., 119 (1996), 513. doi: 10.1017/S0305004100074387.

[1]

Koh Katagata. Transcendental entire functions whose Julia sets contain any infinite collection of quasiconformal copies of quadratic Julia sets. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5319-5337. doi: 10.3934/dcds.2019217

[2]

Patricia Domínguez, Peter Makienko, Guillermo Sienra. Ruelle operator and transcendental entire maps. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 773-789. doi: 10.3934/dcds.2005.12.773

[3]

Agnieszka Badeńska. Measure rigidity for some transcendental meromorphic functions. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2375-2402. doi: 10.3934/dcds.2012.32.2375

[4]

Núria Fagella, Christian Henriksen. Deformation of entire functions with Baker domains. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 379-394. doi: 10.3934/dcds.2006.15.379

[5]

Peter Giesl. Converse theorem on a global contraction metric for a periodic orbit. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5339-5363. doi: 10.3934/dcds.2019218

[6]

Mark Comerford. Non-autonomous Julia sets with measurable invariant sequences of line fields. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 629-642. doi: 10.3934/dcds.2013.33.629

[7]

Shi-Liang Wu, Cheng-Hsiung Hsu. Entire solutions with merging fronts to a bistable periodic lattice dynamical system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2329-2346. doi: 10.3934/dcds.2016.36.2329

[8]

A. Jiménez-Casas. Invariant regions and global existence for a phase field model. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 273-281. doi: 10.3934/dcdss.2008.1.273

[9]

Anete S. Cavalcanti. An existence proof of a symmetric periodic orbit in the octahedral six-body problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1903-1922. doi: 10.3934/dcds.2017080

[10]

Peter Giesl, James McMichen. Determination of the basin of attraction of a periodic orbit in two dimensions using meshless collocation. Journal of Computational Dynamics, 2016, 3 (2) : 191-210. doi: 10.3934/jcd.2016010

[11]

Tatiane C. Batista, Juliano S. Gonschorowski, Fábio A. Tal. Density of the set of endomorphisms with a maximizing measure supported on a periodic orbit. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3315-3326. doi: 10.3934/dcds.2015.35.3315

[12]

Xueting Tian, Shirou Wang, Xiaodong Wang. Intermediate Lyapunov exponents for systems with periodic orbit gluing property. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1019-1032. doi: 10.3934/dcds.2019042

[13]

Dag Lukkassen, Annette Meidell, Peter Wall. On the conjugate of periodic piecewise harmonic functions. Networks & Heterogeneous Media, 2008, 3 (3) : 633-646. doi: 10.3934/nhm.2008.3.633

[14]

Peter Giesl. Necessary condition for the basin of attraction of a periodic orbit in non-smooth periodic systems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 355-373. doi: 10.3934/dcds.2007.18.355

[15]

Nguyen Thieu Huy, Pham Van Bang. Invariant stable manifolds for partial neutral functional differential equations in admissible spaces on a half-line. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2993-3011. doi: 10.3934/dcdsb.2015.20.2993

[16]

Tao Chen, Yunping Jiang, Gaofei Zhang. No invariant line fields on escaping sets of the family $\lambda e^{iz}+\gamma e^{-iz}$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1883-1890. doi: 10.3934/dcds.2013.33.1883

[17]

Yi Shi, Kai Bao, Xiao-Ping Wang. 3D adaptive finite element method for a phase field model for the moving contact line problems. Inverse Problems & Imaging, 2013, 7 (3) : 947-959. doi: 10.3934/ipi.2013.7.947

[18]

Francois Ledrappier and Omri Sarig. Invariant measures for the horocycle flow on periodic hyperbolic surfaces. Electronic Research Announcements, 2005, 11: 89-94.

[19]

Michihiro Hirayama. Periodic probability measures are dense in the set of invariant measures. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1185-1192. doi: 10.3934/dcds.2003.9.1185

[20]

Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]