July  2013, 33(7): 3211-3223. doi: 10.3934/dcds.2013.33.3211

Persistence properties and infinite propagation for the modified 2-component Camassa--Holm equation

1. 

Institute of Applied Physics and Computational Mathematics, Beijing, 100088, China

2. 

Institute of Applied Physics & Computational Math., Beijing 100088

Received  April 2012 Revised  July 2012 Published  January 2013

In this paper, we mainly study persistence properties and infinite propagation for the modified 2-component Camassa--Holm equation. We first prove that persistence properties of the solution to the equation provided the initial potential satisfies a certain sign condition. Finally, we get the infinite propagation if the initial datas satisfy certain compact conditions, while the solution to system (1.1) instantly loses compactly supported, the solution has exponential decay as $|x|$ goes to infinity.
Citation: Xinglong Wu, Boling Guo. Persistence properties and infinite propagation for the modified 2-component Camassa--Holm equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3211-3223. doi: 10.3934/dcds.2013.33.3211
References:
[1]

R. Beals, D. Sattinger and J. Szmigielski, Multipeakons and a theorem of Stieltjes,, Inverse Problems, 15 (1999), 1. doi: 10.1088/0266-5611/15/1/001. Google Scholar

[2]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa- Holm equation,, Arch. Rat. Mech. Anal., 183 (2007), 215. doi: 10.1007/s00205-006-0010-z. Google Scholar

[3]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl., 5 (2007), 1. doi: 10.1142/S0219530507000857. Google Scholar

[4]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Letters, 71 (1993), 1661. doi: 10.1103/PhysRevLett.71.1661. Google Scholar

[5]

R. Camassa, D. Holm and J. Hyman, An integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1. Google Scholar

[6]

A. Constantin, On the scattering problem for the Camassa-Holm equation,, Proc. R. Soc. London A, 457 (2001), 953. doi: 10.1098/rspa.2000.0701. Google Scholar

[7]

A. Constantin, Global existence and breaking waves for a shallow water equation: A geometric approch,, Ann. Inst. Fourier (Grenoble), 50 (2000), 321. Google Scholar

[8]

A. Constantin, Finite propagation speed for the Camassa-Holm equation,, J. Math. Phys., 46 (2005). doi: 10.1063/1.1845603. Google Scholar

[9]

A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation,, Math. Z., 233 (2000), 75. doi: 10.1007/PL00004793. Google Scholar

[10]

A. Constantin and W. A. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603. doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.3.CO;2-C. Google Scholar

[11]

H. H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod,, Acta Mechanica, 127 (1998), 193. doi: 10.1007/BF01170373. Google Scholar

[12]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries,, Physica D, 4 (1981), 47. doi: 10.1016/0167-2789(81)90004-X. Google Scholar

[13]

A. E. Green and P. M. Naghdi, A derivation of equations for wave propagation in water of variable depth,, J. Fluid Mech., 78 (1976), 237. Google Scholar

[14]

C. Guan and Z. Yin, Well-podness and blow-up pheonmena for a modified two-component Camassa- Holm equation,, in, 526 (2010), 199. Google Scholar

[15]

D. Henry, Compactly supported solutions of the Camassa-Holm equation,, J. Nonlinear Math. Phys., 12 (2005), 342. doi: 10.2991/jnmp.2005.12.3.3. Google Scholar

[16]

A. Himonas, G. Misiolek, G. Ponce and Y. Zhou, Persistence properties and unique continuation of solutions of the Camassa-Holm equation,, Comm. Math. Phys., 271 (2007), 511. doi: 10.1007/s00220-006-0172-4. Google Scholar

[17]

D. Holm, J. Marsden and T. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories,, Adv. Math., 137 (1998), 1. doi: 10.1006/aima.1998.1721. Google Scholar

[18]

D. Holm, L. Naraigh and C. Tronci, Singular solution of a modified two-component Camassa-Holm equation,, Phy. Rev. E., 79 (2009), 1. doi: 10.1103/PhysRevE.79.016601. Google Scholar

[19]

T. Kato, On the Korteweg-de Vries equation,, Manuscripta Math., 28 (1979), 89. Google Scholar

[20]

T. Kato, On the Cauchy problem for the generalized Korteweg-de Vries equation,, in, 8 (1983), 93. Google Scholar

[21]

J. Liu and Z. Yin, Global existence and blow-up phenomena for a periodic modified two-component Camassa-Holm equation,, IMA J. Appl. Math., 34 (): 1. Google Scholar

[22]

W. Tan and Z. Yin, Global periodic conservative solutions of a periodic modified two-component Camassa-Holm equation,, J. Funct. Anal., 261 (2011), 1204. doi: 10.1016/j.jfa.2011.04.015. Google Scholar

show all references

References:
[1]

R. Beals, D. Sattinger and J. Szmigielski, Multipeakons and a theorem of Stieltjes,, Inverse Problems, 15 (1999), 1. doi: 10.1088/0266-5611/15/1/001. Google Scholar

[2]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa- Holm equation,, Arch. Rat. Mech. Anal., 183 (2007), 215. doi: 10.1007/s00205-006-0010-z. Google Scholar

[3]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl., 5 (2007), 1. doi: 10.1142/S0219530507000857. Google Scholar

[4]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Letters, 71 (1993), 1661. doi: 10.1103/PhysRevLett.71.1661. Google Scholar

[5]

R. Camassa, D. Holm and J. Hyman, An integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1. Google Scholar

[6]

A. Constantin, On the scattering problem for the Camassa-Holm equation,, Proc. R. Soc. London A, 457 (2001), 953. doi: 10.1098/rspa.2000.0701. Google Scholar

[7]

A. Constantin, Global existence and breaking waves for a shallow water equation: A geometric approch,, Ann. Inst. Fourier (Grenoble), 50 (2000), 321. Google Scholar

[8]

A. Constantin, Finite propagation speed for the Camassa-Holm equation,, J. Math. Phys., 46 (2005). doi: 10.1063/1.1845603. Google Scholar

[9]

A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation,, Math. Z., 233 (2000), 75. doi: 10.1007/PL00004793. Google Scholar

[10]

A. Constantin and W. A. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603. doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.3.CO;2-C. Google Scholar

[11]

H. H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod,, Acta Mechanica, 127 (1998), 193. doi: 10.1007/BF01170373. Google Scholar

[12]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries,, Physica D, 4 (1981), 47. doi: 10.1016/0167-2789(81)90004-X. Google Scholar

[13]

A. E. Green and P. M. Naghdi, A derivation of equations for wave propagation in water of variable depth,, J. Fluid Mech., 78 (1976), 237. Google Scholar

[14]

C. Guan and Z. Yin, Well-podness and blow-up pheonmena for a modified two-component Camassa- Holm equation,, in, 526 (2010), 199. Google Scholar

[15]

D. Henry, Compactly supported solutions of the Camassa-Holm equation,, J. Nonlinear Math. Phys., 12 (2005), 342. doi: 10.2991/jnmp.2005.12.3.3. Google Scholar

[16]

A. Himonas, G. Misiolek, G. Ponce and Y. Zhou, Persistence properties and unique continuation of solutions of the Camassa-Holm equation,, Comm. Math. Phys., 271 (2007), 511. doi: 10.1007/s00220-006-0172-4. Google Scholar

[17]

D. Holm, J. Marsden and T. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories,, Adv. Math., 137 (1998), 1. doi: 10.1006/aima.1998.1721. Google Scholar

[18]

D. Holm, L. Naraigh and C. Tronci, Singular solution of a modified two-component Camassa-Holm equation,, Phy. Rev. E., 79 (2009), 1. doi: 10.1103/PhysRevE.79.016601. Google Scholar

[19]

T. Kato, On the Korteweg-de Vries equation,, Manuscripta Math., 28 (1979), 89. Google Scholar

[20]

T. Kato, On the Cauchy problem for the generalized Korteweg-de Vries equation,, in, 8 (1983), 93. Google Scholar

[21]

J. Liu and Z. Yin, Global existence and blow-up phenomena for a periodic modified two-component Camassa-Holm equation,, IMA J. Appl. Math., 34 (): 1. Google Scholar

[22]

W. Tan and Z. Yin, Global periodic conservative solutions of a periodic modified two-component Camassa-Holm equation,, J. Funct. Anal., 261 (2011), 1204. doi: 10.1016/j.jfa.2011.04.015. Google Scholar

[1]

David Henry. Infinite propagation speed for a two component Camassa-Holm equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 597-606. doi: 10.3934/dcdsb.2009.12.597

[2]

Joachim Escher, Olaf Lechtenfeld, Zhaoyang Yin. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 493-513. doi: 10.3934/dcds.2007.19.493

[3]

Min Zhu, Shuanghu Zhang. On the blow-up of solutions to the periodic modified integrable Camassa--Holm equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2347-2364. doi: 10.3934/dcds.2016.36.2347

[4]

Qiaoyi Hu, Zhijun Qiao. Persistence properties and unique continuation for a dispersionless two-component Camassa-Holm system with peakon and weak kink solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2613-2625. doi: 10.3934/dcds.2016.36.2613

[5]

Katrin Grunert, Helge Holden, Xavier Raynaud. Lipschitz metric for the Camassa--Holm equation on the line. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2809-2827. doi: 10.3934/dcds.2013.33.2809

[6]

Xinglong Wu. On the Cauchy problem of a three-component Camassa--Holm equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2827-2854. doi: 10.3934/dcds.2016.36.2827

[7]

Katrin Grunert. Blow-up for the two-component Camassa--Holm system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2041-2051. doi: 10.3934/dcds.2015.35.2041

[8]

Wei Luo, Zhaoyang Yin. Local well-posedness in the critical Besov space and persistence properties for a three-component Camassa-Holm system with N-peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5047-5066. doi: 10.3934/dcds.2016019

[9]

Helge Holden, Xavier Raynaud. A convergent numerical scheme for the Camassa--Holm equation based on multipeakons. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 505-523. doi: 10.3934/dcds.2006.14.505

[10]

Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065

[11]

Tony Lyons. The 2-component dispersionless Burgers equation arising in the modelling of blood flow. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1563-1576. doi: 10.3934/cpaa.2012.11.1563

[12]

Yu Gao, Jian-Guo Liu. The modified Camassa-Holm equation in Lagrangian coordinates. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2545-2592. doi: 10.3934/dcdsb.2018067

[13]

Yongsheng Mi, Chunlai Mu. On a three-Component Camassa-Holm equation with peakons. Kinetic & Related Models, 2014, 7 (2) : 305-339. doi: 10.3934/krm.2014.7.305

[14]

Katrin Grunert, Helge Holden, Xavier Raynaud. Global conservative solutions to the Camassa--Holm equation for initial data with nonvanishing asymptotics. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4209-4227. doi: 10.3934/dcds.2012.32.4209

[15]

Stephen Anco, Daniel Kraus. Hamiltonian structure of peakons as weak solutions for the modified Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4449-4465. doi: 10.3934/dcds.2018194

[16]

Ying Fu. A note on the Cauchy problem of a modified Camassa-Holm equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2011-2039. doi: 10.3934/dcds.2015.35.2011

[17]

Kai Yan, Zhaoyang Yin. Well-posedness for a modified two-component Camassa-Holm system in critical spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1699-1712. doi: 10.3934/dcds.2013.33.1699

[18]

Shaojie Yang, Tianzhou Xu. Symmetry analysis, persistence properties and unique continuation for the cross-coupled Camassa-Holm system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 329-341. doi: 10.3934/dcds.2018016

[19]

Min Zhu, Shuanghu Zhang. Blow-up of solutions to the periodic modified Camassa-Holm equation with varying linear dispersion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7235-7256. doi: 10.3934/dcds.2016115

[20]

Min Zhu, Ying Wang. Blow-up of solutions to the periodic generalized modified Camassa-Holm equation with varying linear dispersion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 645-661. doi: 10.3934/dcds.2017027

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]