July  2013, 33(7): 3135-3152. doi: 10.3934/dcds.2013.33.3135

Entropy and exact Devaney chaos on totally regular continua

1. 

Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica

Received  March 2012 Revised  May 2012 Published  January 2013

We study topological entropy of exactly Devaney chaotic maps on totally regular continua, i.e. on (topologically) rectifiable curves. After introducing the so-called $P$-Lipschitz maps (where $P$ is a finite invariant set) we give an upper bound for their topological entropy. We prove that if a non-degenerate totally regular continuum $X$ contains a free arc which does not disconnect $X$ or if $X$ contains arbitrarily large generalized stars then $X$ admits an exactly Devaney chaotic map with arbitrarily small entropy. A possible application for further study of the best lower bounds of topological entropies of transitive/Devaney chaotic maps is indicated.
Citation: Vladimír Špitalský. Entropy and exact Devaney chaos on totally regular continua. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3135-3152. doi: 10.3934/dcds.2013.33.3135
References:
[1]

L. Alsedà, S. Baldwin, J. Llibre and M. Misiurewicz, Entropy of transitive tree maps,, Topology, 36 (1997), 519. doi: 10.1016/0040-9383(95)00070-4. Google Scholar

[2]

L. Alsedà, S. Kolyada, J. Llibre and L'. Snoha, Entropy and periodic points for transitive maps,, Trans. Amer. Math. Soc., 351 (1999), 1551. doi: 10.1090/S0002-9947-99-02077-2. Google Scholar

[3]

Ll. Alsedà, J. Llibre and M. Misiurewicz, "Combinatorial Dynamics and Entropy in Dimension One,", $2^{nd}$ edition, (2000). Google Scholar

[4]

L. Alsedà, M. A. del Río and J. A. Rodríguez, A splitting theorem for transitive maps,, J. Math. Anal. Appl., 232 (1999), 359. doi: 10.1006/jmaa.1999.6277. Google Scholar

[5]

S. Baldwin, Entropy estimates for transitive maps on trees,, Topology, 40 (2001), 551. doi: 10.1016/S0040-9383(99)00074-9. Google Scholar

[6]

F. Balibrea and L'. Snoha, Topological entropy of Devaney chaotic maps,, Topology Appl., 133 (2003), 225. doi: 10.1016/S0166-8641(03)00090-7. Google Scholar

[7]

R. H. Bing, Partitioning a set,, Bull. Amer. Math. Soc., 55 (1949), 1101. Google Scholar

[8]

A. Blokh, On sensitive mappings of the interval,, Russian Math. Surveys, 37 (1982), 203. Google Scholar

[9]

A. Blokh, On transitive mappings of one-dimensional branched manifolds,, (Russian), (1984), 3. Google Scholar

[10]

A. Blokh, On the connection between entropy and transitivity for one-dimensional mappings,, Russ. Math. Surv., 42 (1987), 165. Google Scholar

[11]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Amer. Math. Soc., 153 (1971), 401. Google Scholar

[12]

R. D. Buskirk, J. Nikiel and E. D. Tymchatyn, Totally regular curves as inverse limits,, Houston J. Math., 18 (1992), 319. Google Scholar

[13]

E. I. Dinaburg, A connection between various entropy characterizations of dynamical systems,, (Russian), 35 (1971), 324. Google Scholar

[14]

M. Dirbák, L'. Snoha and V. Špitalský, Minimality, transitivity, mixing and topological entropy on spaces with a free interval,, Ergodic Theory Dynam. Systems, (). doi: 10.1017/S0143385712000442. Google Scholar

[15]

K. J. Falconer, "The Geometry of Fractal Sets,", Cambridge University Press, (1986). Google Scholar

[16]

H. Federer, "Geometric Measure Theory,", Springer-Verlag New York Inc., (1969). Google Scholar

[17]

D. H. Fremlin, Spaces of finite length,, Proc. London Math. Soc., 64 (1992), 449. doi: 10.1112/plms/s3-64.3.449. Google Scholar

[18]

G. Harańczyk, D. Kwietniak and P. Oprocha, Topological structure and entropy of mixing graph maps,, preprint, (). Google Scholar

[19]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", Cambridge University Press, (1995). Google Scholar

[20]

S. Kolyada and M. Matviichuk, On extensions of transitive maps,, Discrete Contin. Dyn. Syst., 30 (2011), 767. doi: 10.3934/dcds.2011.30.767. Google Scholar

[21]

K. Kuratowski, "Topology, vol. 2,", Academic Press and PWN, (1968). Google Scholar

[22]

D. Kwietniak and M. Misiurewicz, Exact Devaney chaos and entropy,, Qual. Theory Dyn. Syst., 6 (2005), 169. doi: 10.1007/BF02972670. Google Scholar

[23]

S. Macías, "Topics on Continua,", Chapman & Hall/CRC, (2005). doi: 10.1201/9781420026535. Google Scholar

[24]

P. Mattila, "Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability,", Cambridge University Press, (1995). Google Scholar

[25]

S. B. Nadler, "Continuum Theory. An Introduction,", Monographs and Textbooks in Pure and Applied Mathematics, 158 (1992). Google Scholar

[26]

J. Nikiel, Locally connected curves viewed as inverse limits,, Fund. Math., 133 (1989), 125. Google Scholar

[27]

S. Ruette, Chaos for continuous interval maps - a survey of relationship between the various sorts of chaos,, preprint, (). Google Scholar

[28]

V. Špitalský, Length-expanding Lipschitz maps on totally regular continua,, preprint, (). Google Scholar

[29]

G. T. Whyburn, "Analytic Topology,", American Mathematical Society, (1942). Google Scholar

[30]

X. Ye, Topological entropy of transitive maps of a tree,, Ergodic Theory Dynam. Systems, 20 (2000), 289. doi: 10.1017/S0143385700000134. Google Scholar

show all references

References:
[1]

L. Alsedà, S. Baldwin, J. Llibre and M. Misiurewicz, Entropy of transitive tree maps,, Topology, 36 (1997), 519. doi: 10.1016/0040-9383(95)00070-4. Google Scholar

[2]

L. Alsedà, S. Kolyada, J. Llibre and L'. Snoha, Entropy and periodic points for transitive maps,, Trans. Amer. Math. Soc., 351 (1999), 1551. doi: 10.1090/S0002-9947-99-02077-2. Google Scholar

[3]

Ll. Alsedà, J. Llibre and M. Misiurewicz, "Combinatorial Dynamics and Entropy in Dimension One,", $2^{nd}$ edition, (2000). Google Scholar

[4]

L. Alsedà, M. A. del Río and J. A. Rodríguez, A splitting theorem for transitive maps,, J. Math. Anal. Appl., 232 (1999), 359. doi: 10.1006/jmaa.1999.6277. Google Scholar

[5]

S. Baldwin, Entropy estimates for transitive maps on trees,, Topology, 40 (2001), 551. doi: 10.1016/S0040-9383(99)00074-9. Google Scholar

[6]

F. Balibrea and L'. Snoha, Topological entropy of Devaney chaotic maps,, Topology Appl., 133 (2003), 225. doi: 10.1016/S0166-8641(03)00090-7. Google Scholar

[7]

R. H. Bing, Partitioning a set,, Bull. Amer. Math. Soc., 55 (1949), 1101. Google Scholar

[8]

A. Blokh, On sensitive mappings of the interval,, Russian Math. Surveys, 37 (1982), 203. Google Scholar

[9]

A. Blokh, On transitive mappings of one-dimensional branched manifolds,, (Russian), (1984), 3. Google Scholar

[10]

A. Blokh, On the connection between entropy and transitivity for one-dimensional mappings,, Russ. Math. Surv., 42 (1987), 165. Google Scholar

[11]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Amer. Math. Soc., 153 (1971), 401. Google Scholar

[12]

R. D. Buskirk, J. Nikiel and E. D. Tymchatyn, Totally regular curves as inverse limits,, Houston J. Math., 18 (1992), 319. Google Scholar

[13]

E. I. Dinaburg, A connection between various entropy characterizations of dynamical systems,, (Russian), 35 (1971), 324. Google Scholar

[14]

M. Dirbák, L'. Snoha and V. Špitalský, Minimality, transitivity, mixing and topological entropy on spaces with a free interval,, Ergodic Theory Dynam. Systems, (). doi: 10.1017/S0143385712000442. Google Scholar

[15]

K. J. Falconer, "The Geometry of Fractal Sets,", Cambridge University Press, (1986). Google Scholar

[16]

H. Federer, "Geometric Measure Theory,", Springer-Verlag New York Inc., (1969). Google Scholar

[17]

D. H. Fremlin, Spaces of finite length,, Proc. London Math. Soc., 64 (1992), 449. doi: 10.1112/plms/s3-64.3.449. Google Scholar

[18]

G. Harańczyk, D. Kwietniak and P. Oprocha, Topological structure and entropy of mixing graph maps,, preprint, (). Google Scholar

[19]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", Cambridge University Press, (1995). Google Scholar

[20]

S. Kolyada and M. Matviichuk, On extensions of transitive maps,, Discrete Contin. Dyn. Syst., 30 (2011), 767. doi: 10.3934/dcds.2011.30.767. Google Scholar

[21]

K. Kuratowski, "Topology, vol. 2,", Academic Press and PWN, (1968). Google Scholar

[22]

D. Kwietniak and M. Misiurewicz, Exact Devaney chaos and entropy,, Qual. Theory Dyn. Syst., 6 (2005), 169. doi: 10.1007/BF02972670. Google Scholar

[23]

S. Macías, "Topics on Continua,", Chapman & Hall/CRC, (2005). doi: 10.1201/9781420026535. Google Scholar

[24]

P. Mattila, "Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability,", Cambridge University Press, (1995). Google Scholar

[25]

S. B. Nadler, "Continuum Theory. An Introduction,", Monographs and Textbooks in Pure and Applied Mathematics, 158 (1992). Google Scholar

[26]

J. Nikiel, Locally connected curves viewed as inverse limits,, Fund. Math., 133 (1989), 125. Google Scholar

[27]

S. Ruette, Chaos for continuous interval maps - a survey of relationship between the various sorts of chaos,, preprint, (). Google Scholar

[28]

V. Špitalský, Length-expanding Lipschitz maps on totally regular continua,, preprint, (). Google Scholar

[29]

G. T. Whyburn, "Analytic Topology,", American Mathematical Society, (1942). Google Scholar

[30]

X. Ye, Topological entropy of transitive maps of a tree,, Ergodic Theory Dynam. Systems, 20 (2000), 289. doi: 10.1017/S0143385700000134. Google Scholar

[1]

Franco Cardin, Alberto Lovison. Finite mechanical proxies for a class of reducible continuum systems. Networks & Heterogeneous Media, 2014, 9 (3) : 417-432. doi: 10.3934/nhm.2014.9.417

[2]

N. Maaroufi. Topological entropy by unit length for the Ginzburg-Landau equation on the line. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 647-662. doi: 10.3934/dcds.2014.34.647

[3]

Konstantinos Drakakis, Scott Rickard. On the generalization of the Costas property in the continuum. Advances in Mathematics of Communications, 2008, 2 (2) : 113-130. doi: 10.3934/amc.2008.2.113

[4]

Steffen Klassert, Daniel Lenz, Peter Stollmann. Delone measures of finite local complexity and applications to spectral theory of one-dimensional continuum models of quasicrystals. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1553-1571. doi: 10.3934/dcds.2011.29.1553

[5]

Ghassen Askri. Li-Yorke chaos for dendrite maps with zero topological entropy and ω-limit sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 2957-2976. doi: 10.3934/dcds.2017127

[6]

Dominik Kwietniak. Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2451-2467. doi: 10.3934/dcds.2013.33.2451

[7]

Jakub Šotola. Relationship between Li-Yorke chaos and positive topological sequence entropy in nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5119-5128. doi: 10.3934/dcds.2018225

[8]

Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295

[9]

Dmitri Finkelshtein, Yuri Kondratiev, Yuri Kozitsky. Glauber dynamics in continuum: A constructive approach to evolution of states. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1431-1450. doi: 10.3934/dcds.2013.33.1431

[10]

Paolo Podio-Guidugli. On the modeling of transport phenomena in continuum and statistical mechanics. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1393-1411. doi: 10.3934/dcdss.2017074

[11]

Pranay Goel, James Sneyd. Gap junctions and excitation patterns in continuum models of islets. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1969-1990. doi: 10.3934/dcdsb.2012.17.1969

[12]

Piotr Gwiazda, Piotr Minakowski, Agnieszka Świerczewska-Gwiazda. On the anisotropic Orlicz spaces applied in the problems of continuum mechanics. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1291-1306. doi: 10.3934/dcdss.2013.6.1291

[13]

Gilles Pijaudier-Cabot, David Grégoire. A review of non local continuum damage: Modelling of failure?. Networks & Heterogeneous Media, 2014, 9 (4) : 575-597. doi: 10.3934/nhm.2014.9.575

[14]

Lijian Jiang, Yalchin Efendiev, Victor Ginting. Multiscale methods for parabolic equations with continuum spatial scales. Discrete & Continuous Dynamical Systems - B, 2007, 8 (4) : 833-859. doi: 10.3934/dcdsb.2007.8.833

[15]

Marek Fila, Juan-Luis Vázquez, Michael Winkler. A continuum of extinction rates for the fast diffusion equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1129-1147. doi: 10.3934/cpaa.2011.10.1129

[16]

Gabriella Bretti, Ciro D’Apice, Rosanna Manzo, Benedetto Piccoli. A continuum-discrete model for supply chains dynamics. Networks & Heterogeneous Media, 2007, 2 (4) : 661-694. doi: 10.3934/nhm.2007.2.661

[17]

G. Idone, A. Maugeri. Variational inequalities and a transport planning for an elastic and continuum model. Journal of Industrial & Management Optimization, 2005, 1 (1) : 81-86. doi: 10.3934/jimo.2005.1.81

[18]

Phoebus Rosakis. Continuum surface energy from a lattice model. Networks & Heterogeneous Media, 2014, 9 (3) : 453-476. doi: 10.3934/nhm.2014.9.453

[19]

Eric A. Carlen, Maria C. Carvalho, Jonathan Le Roux, Michael Loss, Cédric Villani. Entropy and chaos in the Kac model. Kinetic & Related Models, 2010, 3 (1) : 85-122. doi: 10.3934/krm.2010.3.85

[20]

Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]