July  2013, 33(7): 3109-3134. doi: 10.3934/dcds.2013.33.3109

On the stability of periodic orbits in delay equations with large delay

1. 

Harrison Building, North Park Road, CEMPS, University of Exeter, Exeter, EX4 4QF, United Kingdom

2. 

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany

3. 

Institute of Mathematics, Humboldt University of Berlin, Rudower Chaussee 25, 12489, Berlin

Received  February 2012 Revised  December 2012 Published  January 2013

We prove a necessary and sufficient criterion for the exponential stability of periodic solutions of delay differential equations with large delay. We show that for sufficiently large delay the Floquet spectrum near criticality is characterized by a set of curves, which we call asymptotic continuous spectrum, that is independent on the delay.
Citation: Jan Sieber, Matthias Wolfrum, Mark Lichtner, Serhiy Yanchuk. On the stability of periodic orbits in delay equations with large delay. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3109-3134. doi: 10.3934/dcds.2013.33.3109
References:
[1]

K. Engelborghs, T. Luzyanina and G. Samaey, "DDE-BIFTOOL v.2.00: A Matlab Package for Bifurcation Analysis of Delay Differential Equations,", Report TW 330, (2001). Google Scholar

[2]

J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional-Differential Equations,", 99 of Applied Mathematical Sciences. Springer-Verlag, 99 (1993). Google Scholar

[3]

M. A. Kaashoek and S. M. Verduyn Lunel, Characteristic matrices and spectral properties of evolutionary systems,, Trans. Amer. Math. Soc., 334 (1992), 479. doi: 10.2307/2154470. Google Scholar

[4]

R. Lang and K. Kobayashi, External optical feedback effects on semiconductor injection properties,, IEEE J. of Quant. El., 16 (1980), 347. Google Scholar

[5]

M. Lichtner, M. Wolfrum and S. Yanchuk, The spectrum of delay differential equations with large delay,, SIAM J. Math. Anal., 43 (2011), 788. doi: 10.1137/090766796. Google Scholar

[6]

J. J. Loiseau, W. Michiels, S.-I. Niculescu and R. Sipahi, "Topics in Time Delay Systems: Analysis, Algorithms and Control,", 388 of Lecture Notes in Control and Information Sciences. Springer, 388 (2009). doi: 10.1007/978-3-642-02897-7. Google Scholar

[7]

D. Roose and R. Szalai, Continuation and bifurcation analysis of delay differential equations,, in, (2007), 51. doi: 10.1007/978-1-4020-6356-5_12. Google Scholar

[8]

G. Samaey, K. Engelborghs and D. Roose, Numerical computation of connecting orbits in delay differential equations,, Numer. Algorithms, 30 (2002), 335. doi: 10.1023/A:1020102317544. Google Scholar

[9]

E. Schöll and H. Schuster, "Handbook of Chaos Control,", Wiley, (2008). Google Scholar

[10]

J. Sieber and R. Szalai, Characteristic matrices for linear periodic delay differential equations,, SIAM Journal on Applied Dynamical Systems, 10 (2011), 129. doi: 10.1137/100796455. Google Scholar

[11]

A. L. Skubachevskii and H.-O. Walther, On the Floquet multipliers of periodic solutions to nonlinear functional differential equations,, J. Dynam. Diff. Eq., 18 (2006), 257. doi: 10.1007/s10884-006-9006-5. Google Scholar

[12]

G. Stépán, "Retarded Dynamical Systems: Stability and Characteristic Functions,", Longman Scientific and Technical, (1989). Google Scholar

[13]

R. Szalai, G. Stépán and S. J. Hogan, Continuation of bifurcations in periodic delay differential equations using characteristic matrices,, SIAM Journal on Scientific Computing, 28 (2006), 1301. doi: 10.1137/040618709. Google Scholar

[14]

H.-O. Walther, Density of slowly oscillating solutions of $\dot x(t)=-f(x(t-1))$,, Journal of Mathematical Analysis and Applications, 79 (1981), 127. doi: 10.1016/0022-247X(81)90014-7. Google Scholar

[15]

M Wolfrum and S Yanchuk, Eckhaus instability in systems with large delay,, Phys. Rev. Lett., 96 (2006). doi: 10.1103/PhysRevLett.96.220201. Google Scholar

[16]

S Yanchuk and P Perlikowski, Delay and periodicity,, Physical Review E., 79 (2009). doi: 10.1103/PhysRevE.79.046221. Google Scholar

[17]

S Yanchuk and M Wolfrum, Stability of external cavity modes in the Lang-Kobayashi system with large delay,, SIAM J. Appl. Dyn. Sys., 9 (2010), 519. doi: 10.1137/090751335. Google Scholar

show all references

References:
[1]

K. Engelborghs, T. Luzyanina and G. Samaey, "DDE-BIFTOOL v.2.00: A Matlab Package for Bifurcation Analysis of Delay Differential Equations,", Report TW 330, (2001). Google Scholar

[2]

J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional-Differential Equations,", 99 of Applied Mathematical Sciences. Springer-Verlag, 99 (1993). Google Scholar

[3]

M. A. Kaashoek and S. M. Verduyn Lunel, Characteristic matrices and spectral properties of evolutionary systems,, Trans. Amer. Math. Soc., 334 (1992), 479. doi: 10.2307/2154470. Google Scholar

[4]

R. Lang and K. Kobayashi, External optical feedback effects on semiconductor injection properties,, IEEE J. of Quant. El., 16 (1980), 347. Google Scholar

[5]

M. Lichtner, M. Wolfrum and S. Yanchuk, The spectrum of delay differential equations with large delay,, SIAM J. Math. Anal., 43 (2011), 788. doi: 10.1137/090766796. Google Scholar

[6]

J. J. Loiseau, W. Michiels, S.-I. Niculescu and R. Sipahi, "Topics in Time Delay Systems: Analysis, Algorithms and Control,", 388 of Lecture Notes in Control and Information Sciences. Springer, 388 (2009). doi: 10.1007/978-3-642-02897-7. Google Scholar

[7]

D. Roose and R. Szalai, Continuation and bifurcation analysis of delay differential equations,, in, (2007), 51. doi: 10.1007/978-1-4020-6356-5_12. Google Scholar

[8]

G. Samaey, K. Engelborghs and D. Roose, Numerical computation of connecting orbits in delay differential equations,, Numer. Algorithms, 30 (2002), 335. doi: 10.1023/A:1020102317544. Google Scholar

[9]

E. Schöll and H. Schuster, "Handbook of Chaos Control,", Wiley, (2008). Google Scholar

[10]

J. Sieber and R. Szalai, Characteristic matrices for linear periodic delay differential equations,, SIAM Journal on Applied Dynamical Systems, 10 (2011), 129. doi: 10.1137/100796455. Google Scholar

[11]

A. L. Skubachevskii and H.-O. Walther, On the Floquet multipliers of periodic solutions to nonlinear functional differential equations,, J. Dynam. Diff. Eq., 18 (2006), 257. doi: 10.1007/s10884-006-9006-5. Google Scholar

[12]

G. Stépán, "Retarded Dynamical Systems: Stability and Characteristic Functions,", Longman Scientific and Technical, (1989). Google Scholar

[13]

R. Szalai, G. Stépán and S. J. Hogan, Continuation of bifurcations in periodic delay differential equations using characteristic matrices,, SIAM Journal on Scientific Computing, 28 (2006), 1301. doi: 10.1137/040618709. Google Scholar

[14]

H.-O. Walther, Density of slowly oscillating solutions of $\dot x(t)=-f(x(t-1))$,, Journal of Mathematical Analysis and Applications, 79 (1981), 127. doi: 10.1016/0022-247X(81)90014-7. Google Scholar

[15]

M Wolfrum and S Yanchuk, Eckhaus instability in systems with large delay,, Phys. Rev. Lett., 96 (2006). doi: 10.1103/PhysRevLett.96.220201. Google Scholar

[16]

S Yanchuk and P Perlikowski, Delay and periodicity,, Physical Review E., 79 (2009). doi: 10.1103/PhysRevE.79.046221. Google Scholar

[17]

S Yanchuk and M Wolfrum, Stability of external cavity modes in the Lang-Kobayashi system with large delay,, SIAM J. Appl. Dyn. Sys., 9 (2010), 519. doi: 10.1137/090751335. Google Scholar

[1]

Serhiy Yanchuk, Leonhard Lücken, Matthias Wolfrum, Alexander Mielke. Spectrum and amplitude equations for scalar delay-differential equations with large delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 537-553. doi: 10.3934/dcds.2015.35.537

[2]

Yves Guivarc'h. On the spectrum of a large subgroup of a semisimple group. Journal of Modern Dynamics, 2008, 2 (1) : 15-42. doi: 10.3934/jmd.2008.2.15

[3]

Lucia D. Simonelli. Absolutely continuous spectrum for parabolic flows/maps. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 263-292. doi: 10.3934/dcds.2018013

[4]

Oliver Knill. Singular continuous spectrum and quantitative rates of weak mixing. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 33-42. doi: 10.3934/dcds.1998.4.33

[5]

Fatih Bayazit, Ulrich Groh, Rainer Nagel. Floquet representations and asymptotic behavior of periodic evolution families. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4795-4810. doi: 10.3934/dcds.2013.33.4795

[6]

Dariusz Skrenty. Absolutely continuous spectrum of some group extensions of Gaussian actions. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 365-378. doi: 10.3934/dcds.2010.26.365

[7]

Bassam Fayad, A. Windsor. A dichotomy between discrete and continuous spectrum for a class of special flows over rotations. Journal of Modern Dynamics, 2007, 1 (1) : 107-122. doi: 10.3934/jmd.2007.1.107

[8]

C. T. Cremins, G. Infante. A semilinear $A$-spectrum. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 235-242. doi: 10.3934/dcdss.2008.1.235

[9]

Benjamin B. Kennedy. A state-dependent delay equation with negative feedback and "mildly unstable" rapidly oscillating periodic solutions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1633-1650. doi: 10.3934/dcdsb.2013.18.1633

[10]

Juntao Sun, Jifeng Chu, Zhaosheng Feng. Homoclinic orbits for first order periodic Hamiltonian systems with spectrum point zero. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3807-3824. doi: 10.3934/dcds.2013.33.3807

[11]

Fabien Durand, Alejandro Maass. A note on limit laws for minimal Cantor systems with infinite periodic spectrum. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 745-750. doi: 10.3934/dcds.2003.9.745

[12]

Said Boulite, S. Hadd, L. Maniar. Critical spectrum and stability for population equations with diffusion in unbounded domains. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 265-276. doi: 10.3934/dcdsb.2005.5.265

[13]

Miguel V. S. Frasson, Patricia H. Tacuri. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1105-1117. doi: 10.3934/cpaa.2014.13.1105

[14]

Christopher K. R. T. Jones, Robert Marangell. The spectrum of travelling wave solutions to the Sine-Gordon equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 925-937. doi: 10.3934/dcdss.2012.5.925

[15]

Ciprian Preda, Petre Preda, Adriana Petre. On the asymptotic behavior of an exponentially bounded, strongly continuous cocycle over a semiflow. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1637-1645. doi: 10.3934/cpaa.2009.8.1637

[16]

Darren C. Ong. Orthogonal polynomials on the unit circle with quasiperiodic Verblunsky coefficients have generic purely singular continuous spectrum. Conference Publications, 2013, 2013 (special) : 605-609. doi: 10.3934/proc.2013.2013.605

[17]

Dmitry Dolgopyat, Dmitry Jakobson. On small gaps in the length spectrum. Journal of Modern Dynamics, 2016, 10: 339-352. doi: 10.3934/jmd.2016.10.339

[18]

Natalija Sergejeva. On the unusual Fucik spectrum. Conference Publications, 2007, 2007 (Special) : 920-926. doi: 10.3934/proc.2007.2007.920

[19]

Umesh V. Dubey, Vivek M. Mallick. Spectrum of some triangulated categories. Electronic Research Announcements, 2011, 18: 50-53. doi: 10.3934/era.2011.18.50

[20]

Tim Alderson, Alessandro Neri. Maximum weight spectrum codes. Advances in Mathematics of Communications, 2019, 13 (1) : 101-119. doi: 10.3934/amc.2019006

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (14)

[Back to Top]