January  2013, 33(1): 305-320. doi: 10.3934/dcds.2013.33.305

Existence, regularity and boundary behaviour of bounded variation solutions of a one-dimensional capillarity equation

1. 

Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, Via A. Valerio 12/1, 34127 Trieste, Italy, Italy

Received  August 2011 Published  September 2012

We discuss existence and regularity of bounded variation solutions of the Dirichlet problem for the one-dimensional capillarity-type equation \begin{equation*} \Big( u'/{ \sqrt{1+{u'}^2}}\Big)' = f(t,u) \quad \hbox{ in } {]-r,r[}, \qquad u(-r)=a, \, u(r) = b. \end{equation*} We prove interior regularity of solutions and we obtain a precise description of their boundary behaviour. This is achieved by a direct and elementary approach that exploits the properties of the zero set of the right-hand side $f$ of the equation.
Citation: Franco Obersnel, Pierpaolo Omari. Existence, regularity and boundary behaviour of bounded variation solutions of a one-dimensional capillarity equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 305-320. doi: 10.3934/dcds.2013.33.305
References:
[1]

G. Anzellotti, The Euler equation for functionals with linear growth,, Trans. Amer. Math. Soc., 290 (1985), 483. doi: 10.1090/S0002-9947-1985-0792808-4. Google Scholar

[2]

D. Bonheure, F. Obersnel and P. Omari, Heteroclinic solutions of the prescribed curvature equation with a double-well potential,, preprint, (2011). Google Scholar

[3]

D. Bonheure, P. Habets, F. Obersnel and P. Omari, Classical and non-classical solutions of a prescribed curvature equation,, J. Differential Equations, 243 (2007), 208. doi: 10.1016/j.jde.2007.05.031. Google Scholar

[4]

D. Bonheure, P. Habets, F. Obersnel and P. Omari, Classical and non-classical positive solutions of a prescribed curvature equation with singularities,, Rend. Istit. Mat. Univ. Trieste, 39 (2007), 63. Google Scholar

[5]

G. Buttazzo, M. Giaquinta and S. Hildebrandt, "One-dimensional Variational Problems. An Introduction,'', Clarendon Press, (1998). Google Scholar

[6]

K. C. Chang, The spectrum of the 1-Laplace operator,, Commun. Contemp. Math., 11 (2009), 865. doi: 10.1142/S0219199709003570. Google Scholar

[7]

M. Emmer, Esistenza, unicità e regolarità nelle superfici di equilibrio nei capillari,, Ann. Univ. Ferrara Sez. VII (N.S.), 18 (1973), 79. Google Scholar

[8]

C. Gerhardt, Existence and regularity of capillary surfaces,, Boll. Un. Mat. Ital. (4), 10 (1974), 317. Google Scholar

[9]

C. Gerhardt, Existence, regularity, and boundary behavior of generalized surfaces of prescribed mean curvature,, Math. Z., 139 (1974), 173. doi: 10.1007/BF01418314. Google Scholar

[10]

M. Giaquinta, Regolarità delle superfici $BV$ con curvatura media assegnata,, Boll. Un. Mat. Ital. (4), 8 (1973), 567. Google Scholar

[11]

E. Giusti, "Minimal Surfaces and Functions of Bounded Variations,", Birkhäuser, (1984). Google Scholar

[12]

P. Habets and P. Omari, Multiple positive solutions of a one-dimensional prescribed mean curvature problem,, Commun. Contemp. Math., 9 (2007), 701. doi: 10.1142/S0219199707002617. Google Scholar

[13]

A. Hammerstein, Nichtlineare Integralgleichungen nebst Anwendungen,, Acta Math., 54 (1930), 117. doi: 10.1007/BF02547519. Google Scholar

[14]

V. K. Le, Some existence results on non-trivial solutions of the prescribed mean curvature equation,, Adv. Nonlinear Stud., 5 (2005), 133. Google Scholar

[15]

V. K. Le, Variational method based on finite dimensional approximation in a generalized prescribed mean curvature problem,, J. Differential Equations, 246 (2009), 3559. doi: 10.1016/j.jde.2008.11.015. Google Scholar

[16]

U. Massari, Esistenza e regolarità delle ipersuperficie di curvatura media assegnata in $\RR^n$,, Arch. Rational Mech. Anal., 55 (1974), 357. doi: 10.1007/BF00250439. Google Scholar

[17]

J. Mawhin, J. R. Ward Jr. and M. Willem, Variational methods and semilinear elliptic equations,, Arch. Rational Mech. Anal., 95 (1986), 269. doi: 10.1007/BF00251362. Google Scholar

[18]

A. Mellet and J. Vovelle, Existence and regularity of extremal solutions for a mean-curvature equation,, J. Differential Equations, 249 (2010), 37. doi: 10.1016/j.jde.2010.03.026. Google Scholar

[19]

M. Miranda, Dirichlet problem with L 1 data for the non-homogeneous minimal surface equation,, Indiana Univ. Math. J., 24 (): 227. doi: 10.1512/iumj.1974.24.24020. Google Scholar

[20]

F. Obersnel, Classical and non-classical sign changing solutions of a one-dimensional autonomous prescribed curvature equation,, Adv. Nonlinear Stud., 7 (2007), 1. Google Scholar

[21]

F. Obersnel and P. Omari, Existence and multiplicity results for the prescribed mean curvature equation via lower and upper solutions,, Differential Integral Equations, 22 (2009), 853. Google Scholar

[22]

F. Obersnel and P. Omari, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation,, J. Differential Equations, 249 (2010), 1674. doi: 10.1016/j.jde.2010.07.001. Google Scholar

[23]

F. Obersnel, P. Omari and S. Rivetti, Existence, regularity and stability properties of periodic solutions of a capillarity equation in the presence of lower and upper solutions,, Nonlinear Anal. Real World Appl., 13 (2012), 2830. doi: 10.1016/j.nonrwa.2012.04.012. Google Scholar

[24]

L. Schwartz, Les théorèmes de Whitney sur les fonctions différentiables,, Séminaire Bourbaki, 1 (1995), 355. Google Scholar

[25]

J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables,, Philos. Trans. Roy. Soc. London Ser. A, 264 (1969), 413. doi: 10.1098/rsta.1969.0033. Google Scholar

show all references

References:
[1]

G. Anzellotti, The Euler equation for functionals with linear growth,, Trans. Amer. Math. Soc., 290 (1985), 483. doi: 10.1090/S0002-9947-1985-0792808-4. Google Scholar

[2]

D. Bonheure, F. Obersnel and P. Omari, Heteroclinic solutions of the prescribed curvature equation with a double-well potential,, preprint, (2011). Google Scholar

[3]

D. Bonheure, P. Habets, F. Obersnel and P. Omari, Classical and non-classical solutions of a prescribed curvature equation,, J. Differential Equations, 243 (2007), 208. doi: 10.1016/j.jde.2007.05.031. Google Scholar

[4]

D. Bonheure, P. Habets, F. Obersnel and P. Omari, Classical and non-classical positive solutions of a prescribed curvature equation with singularities,, Rend. Istit. Mat. Univ. Trieste, 39 (2007), 63. Google Scholar

[5]

G. Buttazzo, M. Giaquinta and S. Hildebrandt, "One-dimensional Variational Problems. An Introduction,'', Clarendon Press, (1998). Google Scholar

[6]

K. C. Chang, The spectrum of the 1-Laplace operator,, Commun. Contemp. Math., 11 (2009), 865. doi: 10.1142/S0219199709003570. Google Scholar

[7]

M. Emmer, Esistenza, unicità e regolarità nelle superfici di equilibrio nei capillari,, Ann. Univ. Ferrara Sez. VII (N.S.), 18 (1973), 79. Google Scholar

[8]

C. Gerhardt, Existence and regularity of capillary surfaces,, Boll. Un. Mat. Ital. (4), 10 (1974), 317. Google Scholar

[9]

C. Gerhardt, Existence, regularity, and boundary behavior of generalized surfaces of prescribed mean curvature,, Math. Z., 139 (1974), 173. doi: 10.1007/BF01418314. Google Scholar

[10]

M. Giaquinta, Regolarità delle superfici $BV$ con curvatura media assegnata,, Boll. Un. Mat. Ital. (4), 8 (1973), 567. Google Scholar

[11]

E. Giusti, "Minimal Surfaces and Functions of Bounded Variations,", Birkhäuser, (1984). Google Scholar

[12]

P. Habets and P. Omari, Multiple positive solutions of a one-dimensional prescribed mean curvature problem,, Commun. Contemp. Math., 9 (2007), 701. doi: 10.1142/S0219199707002617. Google Scholar

[13]

A. Hammerstein, Nichtlineare Integralgleichungen nebst Anwendungen,, Acta Math., 54 (1930), 117. doi: 10.1007/BF02547519. Google Scholar

[14]

V. K. Le, Some existence results on non-trivial solutions of the prescribed mean curvature equation,, Adv. Nonlinear Stud., 5 (2005), 133. Google Scholar

[15]

V. K. Le, Variational method based on finite dimensional approximation in a generalized prescribed mean curvature problem,, J. Differential Equations, 246 (2009), 3559. doi: 10.1016/j.jde.2008.11.015. Google Scholar

[16]

U. Massari, Esistenza e regolarità delle ipersuperficie di curvatura media assegnata in $\RR^n$,, Arch. Rational Mech. Anal., 55 (1974), 357. doi: 10.1007/BF00250439. Google Scholar

[17]

J. Mawhin, J. R. Ward Jr. and M. Willem, Variational methods and semilinear elliptic equations,, Arch. Rational Mech. Anal., 95 (1986), 269. doi: 10.1007/BF00251362. Google Scholar

[18]

A. Mellet and J. Vovelle, Existence and regularity of extremal solutions for a mean-curvature equation,, J. Differential Equations, 249 (2010), 37. doi: 10.1016/j.jde.2010.03.026. Google Scholar

[19]

M. Miranda, Dirichlet problem with L 1 data for the non-homogeneous minimal surface equation,, Indiana Univ. Math. J., 24 (): 227. doi: 10.1512/iumj.1974.24.24020. Google Scholar

[20]

F. Obersnel, Classical and non-classical sign changing solutions of a one-dimensional autonomous prescribed curvature equation,, Adv. Nonlinear Stud., 7 (2007), 1. Google Scholar

[21]

F. Obersnel and P. Omari, Existence and multiplicity results for the prescribed mean curvature equation via lower and upper solutions,, Differential Integral Equations, 22 (2009), 853. Google Scholar

[22]

F. Obersnel and P. Omari, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation,, J. Differential Equations, 249 (2010), 1674. doi: 10.1016/j.jde.2010.07.001. Google Scholar

[23]

F. Obersnel, P. Omari and S. Rivetti, Existence, regularity and stability properties of periodic solutions of a capillarity equation in the presence of lower and upper solutions,, Nonlinear Anal. Real World Appl., 13 (2012), 2830. doi: 10.1016/j.nonrwa.2012.04.012. Google Scholar

[24]

L. Schwartz, Les théorèmes de Whitney sur les fonctions différentiables,, Séminaire Bourbaki, 1 (1995), 355. Google Scholar

[25]

J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables,, Philos. Trans. Roy. Soc. London Ser. A, 264 (1969), 413. doi: 10.1098/rsta.1969.0033. Google Scholar

[1]

Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569

[2]

Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure & Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191

[3]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[4]

Franco Obersnel, Pierpaolo Omari. Multiple bounded variation solutions of a capillarity problem. Conference Publications, 2011, 2011 (Special) : 1129-1137. doi: 10.3934/proc.2011.2011.1129

[5]

Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099

[6]

Gökçe Dİlek Küçük, Gabil Yagub, Ercan Çelİk. On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 503-512. doi: 10.3934/dcdss.2019033

[7]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[8]

Kim-Ngan Le, William McLean, Martin Stynes. Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2765-2787. doi: 10.3934/cpaa.2019124

[9]

Xiang-Dong Fang. A positive solution for an asymptotically cubic quasilinear Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (1) : 51-64. doi: 10.3934/cpaa.2019004

[10]

Shaoyong Lai, Yong Hong Wu. The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 401-408. doi: 10.3934/dcdsb.2003.3.401

[11]

Yalçin Sarol, Frederi Viens. Time regularity of the evolution solution to fractional stochastic heat equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 895-910. doi: 10.3934/dcdsb.2006.6.895

[12]

Iasson Karafyllis, Lars Grüne. Feedback stabilization methods for the numerical solution of ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 283-317. doi: 10.3934/dcdsb.2011.16.283

[13]

Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281

[14]

Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31

[15]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[16]

Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613

[17]

Juan Dávila, Louis Dupaigne, Marcelo Montenegro. The extremal solution of a boundary reaction problem. Communications on Pure & Applied Analysis, 2008, 7 (4) : 795-817. doi: 10.3934/cpaa.2008.7.795

[18]

Cong He, Hongjun Yu. Large time behavior of the solution to the Landau Equation with specular reflective boundary condition. Kinetic & Related Models, 2013, 6 (3) : 601-623. doi: 10.3934/krm.2013.6.601

[19]

Bhargav Kumar Kakumani, Suman Kumar Tumuluri. Asymptotic behavior of the solution of a diffusion equation with nonlocal boundary conditions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 407-419. doi: 10.3934/dcdsb.2017019

[20]

Zijuan Wen, Meng Fan, Asim M. Asiri, Ebraheem O. Alzahrani, Mohamed M. El-Dessoky, Yang Kuang. Global existence and uniqueness of classical solutions for a generalized quasilinear parabolic equation with application to a glioblastoma growth model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 407-420. doi: 10.3934/mbe.2017025

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]