June  2013, 33(6): 2349-2368. doi: 10.3934/dcds.2013.33.2349

Thermal runaway for a nonlinear diffusion model in thermal electricity

1. 

Department of Mathematics, Sichuan University, Chengdu 610064, China

2. 

Department of Mathematics, Jingcheng College of Sichuan University, Chengdu 611731, China

Received  January 2012 Revised  May 2012 Published  December 2012

In this paper, we consider the phenomena of the thermal runaway and the asymptotic runaway in a nonlocal nonlinear model, which is raised from the thermal-electricity and it is so-called an Ohmic heating model. The model prescribes the dimensionless temperature when the electric current flows through two conductors, subject to a fixed potential difference. The electrical resistivity of the one of the conductors depends on the temperature and the other one remains constant. The problem will be mathematically formulated to a quasilinear nonlocal parabolic equation with Dirichlet boundary condition. An analysis of the problem shows that the solution of the problem exists globally, provided that the conductor with constant resistivity is connected. Furthermore, for some special temperature-resistivity relations, the unique stationary solution is shown to be global asymptotically stable. The results assert a physical fact that the thermal produced by the Ohmic heating process will runaway from the surfaces of the conductor, the temperature of the conductor remains bounded and solution of the system converges asymptotically to the unique equilibrium.
Citation: Lili Du, Mingshu Fan. Thermal runaway for a nonlinear diffusion model in thermal electricity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2349-2368. doi: 10.3934/dcds.2013.33.2349
References:
[1]

D. G. Aronson, On the Green's function for second order parabolic differential equations with discontinuous coefficients,, Bull. Amer. Math. Soc., 69 (1963), 841.

[2]

J. W. Bebernes and R. Ely, Existence and invariance for parabolic functional equations,, Nonlinear Anal. TMA., 7 (1983), 1225. doi: 10.1016/0362-546X(83)90054-8.

[3]

J. W. Bebernes and D. Eberly, "Mathematical Problems From Combustion Theory,", Applied Mathematical Sciences, 83 (1989).

[4]

J. W. Bebernes and P. Talaga, Nonlocal problems modelling shear banding,, Comm. Appl. Nonlinear Anal., 3 (1996), 79.

[5]

E. Dibenedetto, "Degenerate Parabolic Equations,", Springer, (1993). doi: 10.1007/978-1-4612-0895-2.

[6]

L. Du, Blow-up for a degenerate reaction-diffusion system with nonlinear nonlocal sources,, J. Comput. Appl. Math., 202 (2007), 237. doi: 10.1016/j.cam.2006.02.028.

[7]

L. Du, C. Mu and M. Fan, Global existence and non-existence for a quasilinear degenerate parabolic system with non-local source,, Dyn. Syst., 20 (2005), 401. doi: 10.1080/14689360500238818.

[8]

L. Du and Z. Yao, Localization of blow-up points for a nonlinear nonlocal porous medium equation,, Commun. Pure Appl. Anal., 6 (2007), 183. doi: 10.3934/cpaa.2007.6.183.

[9]

M. Fan and L. Du, Asymptotic behavior for an Ohmic heating model in thermal electricity,, Appl. Math. Comput., 218 (2012), 10906. doi: 10.1016/j.amc.2012.04.053.

[10]

M. Fan, C. Mu, L. Du, Uniform blow-up profiles for a nonlocal degenerate parabolic system,, Appl. Math. Sci., 1 (2007), 13.

[11]

N. I. Kavallaris, Asymptotic behaviour and blow-up for a nonlinear diffusion problem with a non-local source term,, Proc. Edinb. Math. Soc., 47 (2004), 375. doi: 10.1017/S0013091503000658.

[12]

A. A. Lacey, Thermal runaway in a non-local problem modelling Ohmic heating: Part I: Model derivation and some spacial cases,, Eur. J. Appl. Math., 6 (1995), 127.

[13]

A. A. Lacey, Thermal runaway in a non-local problem modelling Ohmic heating: Part II: General proof of blow-up and asymptotics of runaway,, Euro. J. Appl. Math., 6 (1995), 201. doi: 10.1017/S0956792500001807.

[14]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Trans. of Math. Monographs, 23 (1968).

[15]

P. Quittner and Ph. Souplet, "Superlinear Parabolic Problems, Blow-Up, Global Existence and Steady States,", Birkhäuser Verlag, (2007).

[16]

Ph. Souplet, Blow-up in nonlocal reaction-diffusion equations,, SIAM J. Math. Anal., 29 (1998), 1301. doi: 10.1137/S0036141097318900.

[17]

Ph. Souplet, Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source,, J. Differ. Eqns, 153 (1999), 374. doi: 10.1006/jdeq.1998.3535.

show all references

References:
[1]

D. G. Aronson, On the Green's function for second order parabolic differential equations with discontinuous coefficients,, Bull. Amer. Math. Soc., 69 (1963), 841.

[2]

J. W. Bebernes and R. Ely, Existence and invariance for parabolic functional equations,, Nonlinear Anal. TMA., 7 (1983), 1225. doi: 10.1016/0362-546X(83)90054-8.

[3]

J. W. Bebernes and D. Eberly, "Mathematical Problems From Combustion Theory,", Applied Mathematical Sciences, 83 (1989).

[4]

J. W. Bebernes and P. Talaga, Nonlocal problems modelling shear banding,, Comm. Appl. Nonlinear Anal., 3 (1996), 79.

[5]

E. Dibenedetto, "Degenerate Parabolic Equations,", Springer, (1993). doi: 10.1007/978-1-4612-0895-2.

[6]

L. Du, Blow-up for a degenerate reaction-diffusion system with nonlinear nonlocal sources,, J. Comput. Appl. Math., 202 (2007), 237. doi: 10.1016/j.cam.2006.02.028.

[7]

L. Du, C. Mu and M. Fan, Global existence and non-existence for a quasilinear degenerate parabolic system with non-local source,, Dyn. Syst., 20 (2005), 401. doi: 10.1080/14689360500238818.

[8]

L. Du and Z. Yao, Localization of blow-up points for a nonlinear nonlocal porous medium equation,, Commun. Pure Appl. Anal., 6 (2007), 183. doi: 10.3934/cpaa.2007.6.183.

[9]

M. Fan and L. Du, Asymptotic behavior for an Ohmic heating model in thermal electricity,, Appl. Math. Comput., 218 (2012), 10906. doi: 10.1016/j.amc.2012.04.053.

[10]

M. Fan, C. Mu, L. Du, Uniform blow-up profiles for a nonlocal degenerate parabolic system,, Appl. Math. Sci., 1 (2007), 13.

[11]

N. I. Kavallaris, Asymptotic behaviour and blow-up for a nonlinear diffusion problem with a non-local source term,, Proc. Edinb. Math. Soc., 47 (2004), 375. doi: 10.1017/S0013091503000658.

[12]

A. A. Lacey, Thermal runaway in a non-local problem modelling Ohmic heating: Part I: Model derivation and some spacial cases,, Eur. J. Appl. Math., 6 (1995), 127.

[13]

A. A. Lacey, Thermal runaway in a non-local problem modelling Ohmic heating: Part II: General proof of blow-up and asymptotics of runaway,, Euro. J. Appl. Math., 6 (1995), 201. doi: 10.1017/S0956792500001807.

[14]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Trans. of Math. Monographs, 23 (1968).

[15]

P. Quittner and Ph. Souplet, "Superlinear Parabolic Problems, Blow-Up, Global Existence and Steady States,", Birkhäuser Verlag, (2007).

[16]

Ph. Souplet, Blow-up in nonlocal reaction-diffusion equations,, SIAM J. Math. Anal., 29 (1998), 1301. doi: 10.1137/S0036141097318900.

[17]

Ph. Souplet, Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source,, J. Differ. Eqns, 153 (1999), 374. doi: 10.1006/jdeq.1998.3535.

[1]

Yuan Lou, Wei-Ming Ni, Linlin Su. An indefinite nonlinear diffusion problem in population genetics, II: Stability and multiplicity. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 643-655. doi: 10.3934/dcds.2010.27.643

[2]

Dong Li, Xiaoyi Zhang. On a nonlocal aggregation model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 301-323. doi: 10.3934/dcds.2010.27.301

[3]

Qingguang Guan, Max Gunzburger. Stability and convergence of time-stepping methods for a nonlocal model for diffusion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1315-1335. doi: 10.3934/dcdsb.2015.20.1315

[4]

V. S. Manoranjan, Hong-Ming Yin, R. Showalter. On two-phase Stefan problem arising from a microwave heating process. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1155-1168. doi: 10.3934/dcds.2006.15.1155

[5]

Renata Bunoiu, Claudia Timofte. Homogenization of a thermal problem with flux jump. Networks & Heterogeneous Media, 2016, 11 (4) : 545-562. doi: 10.3934/nhm.2016009

[6]

Martin Burger, Marco Di Francesco. Large time behavior of nonlocal aggregation models with nonlinear diffusion. Networks & Heterogeneous Media, 2008, 3 (4) : 749-785. doi: 10.3934/nhm.2008.3.749

[7]

Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171

[8]

José-Francisco Rodrigues, João Lita da Silva. On a unilateral reaction-diffusion system and a nonlocal evolution obstacle problem. Communications on Pure & Applied Analysis, 2004, 3 (1) : 85-95. doi: 10.3934/cpaa.2004.3.85

[9]

Jia-Feng Cao, Wan-Tong Li, Meng Zhao. On a free boundary problem for a nonlocal reaction-diffusion model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4117-4139. doi: 10.3934/dcdsb.2018128

[10]

Jonathan E. Rubin. A nonlocal eigenvalue problem for the stability of a traveling wave in a neuronal medium. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 925-940. doi: 10.3934/dcds.2004.10.925

[11]

Peng Zhou, Jiang Yu, Dongmei Xiao. A nonlinear diffusion problem arising in population genetics. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 821-841. doi: 10.3934/dcds.2014.34.821

[12]

Dieter Schmidt, Lucas Valeriano. Nonlinear stability of stationary points in the problem of Robe. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1917-1936. doi: 10.3934/dcdsb.2016029

[13]

María Teresa González Montesinos, Francisco Ortegón Gallego. The evolution thermistor problem with degenerate thermal conductivity. Communications on Pure & Applied Analysis, 2002, 1 (3) : 313-325. doi: 10.3934/cpaa.2002.1.313

[14]

María Teresa González Montesinos, Francisco Ortegón Gallego. The thermistor problem with degenerate thermal conductivity and metallic conduction. Conference Publications, 2007, 2007 (Special) : 446-455. doi: 10.3934/proc.2007.2007.446

[15]

Yicheng Jiang, Kaijun Zhang. Stability of traveling waves for nonlocal time-delayed reaction-diffusion equations. Kinetic & Related Models, 2018, 11 (5) : 1235-1253. doi: 10.3934/krm.2018048

[16]

Hongmei Cheng, Rong Yuan. Existence and stability of traveling waves for Leslie-Gower predator-prey system with nonlocal diffusion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5433-5454. doi: 10.3934/dcds.2017236

[17]

Chunqing Wu, Patricia J.Y. Wong. Global asymptotical stability of the coexistence fixed point of a Ricker-type competitive model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3255-3266. doi: 10.3934/dcdsb.2015.20.3255

[18]

Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations & Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241

[19]

Bedr'Eddine Ainseba, Mostafa Bendahmane, Yuan He. Stability of conductivities in an inverse problem in the reaction-diffusion system in electrocardiology. Networks & Heterogeneous Media, 2015, 10 (2) : 369-385. doi: 10.3934/nhm.2015.10.369

[20]

Georg Hetzer, Wenxian Shen. Preface: Special issue on dissipative systems and applications with emphasis on nonlocal or nonlinear diffusion problems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : i-iii. doi: 10.3934/dcds.2015.35.4i

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]