June  2013, 33(6): 2253-2270. doi: 10.3934/dcds.2013.33.2253

Symbolic extensionsfor partially hyperbolic dynamical systems with 2-dimensional center bundle

1. 

LPMA Université Paris 6, 4 Place Jussieu, 75252 Paris Cedex 05, France

2. 

Department of Mathematics, Brigham Young University, Provo, UT 84602

Received  July 2011 Revised  July 2012 Published  December 2012

We relate the symbolic extension entropy of a partially hyperbolic dynamical system to the entropy appearing at small scales in local center manifolds. In particular, we prove the existence of symbolic extensions for $\mathcal{C}^2$ partially hyperbolic diffeomorphisms with a $2$-dimensional center bundle. 200 words.
Citation: David Burguet, Todd Fisher. Symbolic extensionsfor partially hyperbolic dynamical systems with 2-dimensional center bundle. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2253-2270. doi: 10.3934/dcds.2013.33.2253
References:
[1]

M. Asaoka, Hyperbolic set exhibing $\mathcalC^1$-persistent homoclinic tangency for higher dimensions,, Proc. Am. Math. Soc., 136 (2008), 677. doi: 10.1090/S0002-9939-07-09115-0. Google Scholar

[2]

J. Bochi and M. Viana, The Lyapunov exponents of generic volume preserving and symplectic maps,, Ann. of Math. (2), 161 (2005), 1423. doi: 10.4007/annals.2005.161.1423. Google Scholar

[3]

R. Bowen, Entropy-expansive maps,, Trans. Ame. Math. Soc., 164 (1972), 323. Google Scholar

[4]

M. Boyle and T. Downarowicz, The entropy theory of symbolic extension,, Invent. Math., 156 (2004), 119. doi: 10.1007/s00222-003-0335-2. Google Scholar

[5]

M. Boyle and T. Downarowicz, Symbolic extension entropy : $\mathcalC^r$ examples, products and flows,, Discrete Contin. Dyn. Syst., 16 (2006), 329. doi: 10.3934/dcds.2006.16.329. Google Scholar

[6]

M. Boyle, D. Fiebig and U. Fiebig, Residual entropy, conditional entropy and subshift covers,, Forum Math., 14 (2002), 713. doi: 10.1515/form.2002.031. Google Scholar

[7]

D. Burguet, $\mathcalC^2$ surface diffeomorphism have symbolic extensions,, Invent. Math., 186 (2011), 191. doi: 10.1007/s00222-011-0317-8. Google Scholar

[8]

D. Burguet, A direct proof of the variational principle for tail entropy and its extension to maps,, Ergodic Theory Dynam. Systems, 29 (2009), 357. doi: 10.1017/S0143385708080425. Google Scholar

[9]

D. Burguet, Symbolic extension for $\mathcalC^r$ non uniformly entropy expanding maps,, Colloq. Math., 121 (2010), 129. doi: 10.4064/cm121-1-12. Google Scholar

[10]

K. Burns and A. Wilkinson, On the ergodicity of partially hyperbolic systems,, Ann. of Math. (2), 171 (2010), 451. doi: 10.4007/annals.2010.171.451. Google Scholar

[11]

J. Buzzi, Intrinsic ergodicity for smooth interval maps,, Israel J. Math., 100 (1997), 125. doi: 10.1007/BF02773637. Google Scholar

[12]

W. Cowieson and L.-S. Young, SRB mesaures as zero-noise limits,, Ergod. Th. Dynamic. Systems, 25 (2005), 1115. doi: 10.1017/S0143385704000604. Google Scholar

[13]

L. J. Díaz and T. Fisher, Symbolic extensions and partially hyperbolic diffeomorphisms,, Discrete Contin. Dyn. Syst., 29 (2011), 1419. doi: 10.3934/dcds.2011.29.1419. Google Scholar

[14]

L. J. Diaz, T. Fisher, M. J. Pacifico and J. L. Vieitez, Entropy-expansiveness for partially hyperbolic diffeomorphisms,, Discrete Contin. Dyn. Syst., (). Google Scholar

[15]

T. Downarowicz, "Entropy in Dynamical Systems, New Mathematical Monographs,", 18, 18 (2011). doi: 10.1017/CBO9780511976155. Google Scholar

[16]

T. Downarowicz, Entropy structure,, J. Anal. Math., 96 (2005), 57. doi: 10.1007/BF02787825. Google Scholar

[17]

T. Downarowicz and A. Maass, Smooth interval maps have symbolic extensions: the antarctic theorem,, Invent. Math., 176 (2009), 617. doi: 10.1007/s00222-008-0172-4. Google Scholar

[18]

T. Downarowicz and S. Newhouse, Symbolic extensions in smooth dynamical systems,, Invent. Math., 160 (2005), 453. doi: 10.1007/s00222-004-0413-0. Google Scholar

[19]

M. W. Hirsch, C. C. Pugh and M. Shub, "Invariant Manifolds,", Lecture Notes In Mathematics, 583 (1977). Google Scholar

[20]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", Encyclopedia of Mathematics and Its Applications, 54 (1995). Google Scholar

[21]

M. Misiurewicz, Topological conditional entropy,, Studia Math., 55 (1976), 175. Google Scholar

[22]

S. Newhouse, Continuity properties of entropy,, Ann. of Math. (2), 129 (1989), 215. doi: 10.2307/1971492. Google Scholar

[23]

V. I. Oseledec, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems,, Trudy Moskov. Mat. Obšč., 19 (1968), 197. Google Scholar

[24]

M. Pacifico and J. Vieitez, Entropy-expansiveness and domination for surface diffeomorphisms,, Rev. Mat. Complut., 21 (2008), 293. Google Scholar

[25]

Y. Pesin and L. Barreira, "Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov Exponents,", Encyclopedia of Mathematics and Its Applications, 115 (2007). Google Scholar

[26]

D. Ruelle, An inequality of the entropy of differentiable maps,, Bol. Soc. Brasil. Mat., 9 (1978), 83. doi: 10.1007/BF02584795. Google Scholar

[27]

M. Shub, "Global Stability of Dynamical Systems,", With the collaboration of A. Fathi and R. Langevin. Transl. by J. Cristy, (1987). Google Scholar

[28]

P. Walters, "An Introduction to Ergodic Theory,", Graduate Texts in Mathematics, 79 (1982). Google Scholar

[29]

Y. Yomdin, Volume growth and entropy,, Israel J. Math., 57 (1987), 285. doi: 10.1007/BF02766215. Google Scholar

[30]

Y. Yomdin, $\mathcalC^k$-resolution of semialgebraic mappings. Addendum to : "Volume growth and entropy",, Israel J. Math., 57 (1987), 301. doi: 10.1007/BF02766216. Google Scholar

show all references

References:
[1]

M. Asaoka, Hyperbolic set exhibing $\mathcalC^1$-persistent homoclinic tangency for higher dimensions,, Proc. Am. Math. Soc., 136 (2008), 677. doi: 10.1090/S0002-9939-07-09115-0. Google Scholar

[2]

J. Bochi and M. Viana, The Lyapunov exponents of generic volume preserving and symplectic maps,, Ann. of Math. (2), 161 (2005), 1423. doi: 10.4007/annals.2005.161.1423. Google Scholar

[3]

R. Bowen, Entropy-expansive maps,, Trans. Ame. Math. Soc., 164 (1972), 323. Google Scholar

[4]

M. Boyle and T. Downarowicz, The entropy theory of symbolic extension,, Invent. Math., 156 (2004), 119. doi: 10.1007/s00222-003-0335-2. Google Scholar

[5]

M. Boyle and T. Downarowicz, Symbolic extension entropy : $\mathcalC^r$ examples, products and flows,, Discrete Contin. Dyn. Syst., 16 (2006), 329. doi: 10.3934/dcds.2006.16.329. Google Scholar

[6]

M. Boyle, D. Fiebig and U. Fiebig, Residual entropy, conditional entropy and subshift covers,, Forum Math., 14 (2002), 713. doi: 10.1515/form.2002.031. Google Scholar

[7]

D. Burguet, $\mathcalC^2$ surface diffeomorphism have symbolic extensions,, Invent. Math., 186 (2011), 191. doi: 10.1007/s00222-011-0317-8. Google Scholar

[8]

D. Burguet, A direct proof of the variational principle for tail entropy and its extension to maps,, Ergodic Theory Dynam. Systems, 29 (2009), 357. doi: 10.1017/S0143385708080425. Google Scholar

[9]

D. Burguet, Symbolic extension for $\mathcalC^r$ non uniformly entropy expanding maps,, Colloq. Math., 121 (2010), 129. doi: 10.4064/cm121-1-12. Google Scholar

[10]

K. Burns and A. Wilkinson, On the ergodicity of partially hyperbolic systems,, Ann. of Math. (2), 171 (2010), 451. doi: 10.4007/annals.2010.171.451. Google Scholar

[11]

J. Buzzi, Intrinsic ergodicity for smooth interval maps,, Israel J. Math., 100 (1997), 125. doi: 10.1007/BF02773637. Google Scholar

[12]

W. Cowieson and L.-S. Young, SRB mesaures as zero-noise limits,, Ergod. Th. Dynamic. Systems, 25 (2005), 1115. doi: 10.1017/S0143385704000604. Google Scholar

[13]

L. J. Díaz and T. Fisher, Symbolic extensions and partially hyperbolic diffeomorphisms,, Discrete Contin. Dyn. Syst., 29 (2011), 1419. doi: 10.3934/dcds.2011.29.1419. Google Scholar

[14]

L. J. Diaz, T. Fisher, M. J. Pacifico and J. L. Vieitez, Entropy-expansiveness for partially hyperbolic diffeomorphisms,, Discrete Contin. Dyn. Syst., (). Google Scholar

[15]

T. Downarowicz, "Entropy in Dynamical Systems, New Mathematical Monographs,", 18, 18 (2011). doi: 10.1017/CBO9780511976155. Google Scholar

[16]

T. Downarowicz, Entropy structure,, J. Anal. Math., 96 (2005), 57. doi: 10.1007/BF02787825. Google Scholar

[17]

T. Downarowicz and A. Maass, Smooth interval maps have symbolic extensions: the antarctic theorem,, Invent. Math., 176 (2009), 617. doi: 10.1007/s00222-008-0172-4. Google Scholar

[18]

T. Downarowicz and S. Newhouse, Symbolic extensions in smooth dynamical systems,, Invent. Math., 160 (2005), 453. doi: 10.1007/s00222-004-0413-0. Google Scholar

[19]

M. W. Hirsch, C. C. Pugh and M. Shub, "Invariant Manifolds,", Lecture Notes In Mathematics, 583 (1977). Google Scholar

[20]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,", Encyclopedia of Mathematics and Its Applications, 54 (1995). Google Scholar

[21]

M. Misiurewicz, Topological conditional entropy,, Studia Math., 55 (1976), 175. Google Scholar

[22]

S. Newhouse, Continuity properties of entropy,, Ann. of Math. (2), 129 (1989), 215. doi: 10.2307/1971492. Google Scholar

[23]

V. I. Oseledec, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems,, Trudy Moskov. Mat. Obšč., 19 (1968), 197. Google Scholar

[24]

M. Pacifico and J. Vieitez, Entropy-expansiveness and domination for surface diffeomorphisms,, Rev. Mat. Complut., 21 (2008), 293. Google Scholar

[25]

Y. Pesin and L. Barreira, "Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov Exponents,", Encyclopedia of Mathematics and Its Applications, 115 (2007). Google Scholar

[26]

D. Ruelle, An inequality of the entropy of differentiable maps,, Bol. Soc. Brasil. Mat., 9 (1978), 83. doi: 10.1007/BF02584795. Google Scholar

[27]

M. Shub, "Global Stability of Dynamical Systems,", With the collaboration of A. Fathi and R. Langevin. Transl. by J. Cristy, (1987). Google Scholar

[28]

P. Walters, "An Introduction to Ergodic Theory,", Graduate Texts in Mathematics, 79 (1982). Google Scholar

[29]

Y. Yomdin, Volume growth and entropy,, Israel J. Math., 57 (1987), 285. doi: 10.1007/BF02766215. Google Scholar

[30]

Y. Yomdin, $\mathcalC^k$-resolution of semialgebraic mappings. Addendum to : "Volume growth and entropy",, Israel J. Math., 57 (1987), 301. doi: 10.1007/BF02766216. Google Scholar

[1]

Lorenzo J. Díaz, Todd Fisher. Symbolic extensions and partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1419-1441. doi: 10.3934/dcds.2011.29.1419

[2]

Sergey Kryzhevich, Sergey Tikhomirov. Partial hyperbolicity and central shadowing. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2901-2909. doi: 10.3934/dcds.2013.33.2901

[3]

Yakov Pesin. On the work of Dolgopyat on partial and nonuniform hyperbolicity. Journal of Modern Dynamics, 2010, 4 (2) : 227-241. doi: 10.3934/jmd.2010.4.227

[4]

Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Raúl Ures. Partial hyperbolicity and ergodicity in dimension three. Journal of Modern Dynamics, 2008, 2 (2) : 187-208. doi: 10.3934/jmd.2008.2.187

[5]

Jérôme Buzzi, Todd Fisher. Entropic stability beyond partial hyperbolicity. Journal of Modern Dynamics, 2013, 7 (4) : 527-552. doi: 10.3934/jmd.2013.7.527

[6]

Andy Hammerlindl. Partial hyperbolicity on 3-dimensional nilmanifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3641-3669. doi: 10.3934/dcds.2013.33.3641

[7]

Eleonora Catsigeras, Xueting Tian. Dominated splitting, partial hyperbolicity and positive entropy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4739-4759. doi: 10.3934/dcds.2016006

[8]

Rafael Potrie. Partial hyperbolicity and foliations in $\mathbb{T}^3$. Journal of Modern Dynamics, 2015, 9: 81-121. doi: 10.3934/jmd.2015.9.81

[9]

Marcin Mazur, Jacek Tabor, Piotr Kościelniak. Semi-hyperbolicity and hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1029-1038. doi: 10.3934/dcds.2008.20.1029

[10]

Marcin Mazur, Jacek Tabor. Computational hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1175-1189. doi: 10.3934/dcds.2011.29.1175

[11]

Boris Hasselblatt, Yakov Pesin, Jörg Schmeling. Pointwise hyperbolicity implies uniform hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2819-2827. doi: 10.3934/dcds.2014.34.2819

[12]

Sergiĭ Kolyada, Mykola Matviichuk. On extensions of transitive maps. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 767-777. doi: 10.3934/dcds.2011.30.767

[13]

Steven T. Piantadosi. Symbolic dynamics on free groups. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 725-738. doi: 10.3934/dcds.2008.20.725

[14]

Jacek Serafin. A faithful symbolic extension. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1051-1062. doi: 10.3934/cpaa.2012.11.1051

[15]

Luis Barreira, Claudia Valls. Growth rates and nonuniform hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 509-528. doi: 10.3934/dcds.2008.22.509

[16]

Rasul Shafikov, Christian Wolf. Stable sets, hyperbolicity and dimension. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 403-412. doi: 10.3934/dcds.2005.12.403

[17]

Arno Berger. On finite-time hyperbolicity. Communications on Pure & Applied Analysis, 2011, 10 (3) : 963-981. doi: 10.3934/cpaa.2011.10.963

[18]

Christian Bonatti, Shaobo Gan, Dawei Yang. On the hyperbolicity of homoclinic classes. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1143-1162. doi: 10.3934/dcds.2009.25.1143

[19]

Mickaël Kourganoff. Uniform hyperbolicity in nonflat billiards. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1145-1160. doi: 10.3934/dcds.2018048

[20]

Igor E. Verbitsky. The Hessian Sobolev inequality and its extensions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6165-6179. doi: 10.3934/dcds.2015.35.6165

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]