May  2013, 33(5): 2139-2154. doi: 10.3934/dcds.2013.33.2139

Resonance problems for Kirchhoff type equations

1. 

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

Received  December 2011 Revised  June 2012 Published  December 2012

The existence of weak solutions is obtained for some Kirchhoff type equations with Dirichlet boundary conditions which are resonant at an arbitrary eigenvalue under a Landesman-Lazer type condition by the minimax methods.
Citation: Jijiang Sun, Chun-Lei Tang. Resonance problems for Kirchhoff type equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2139-2154. doi: 10.3934/dcds.2013.33.2139
References:
[1]

S. Ahmad, A. C. Lazer and J. L. Paul, Elementary critical point theory and perturbations of elliptic boundary value problems at resonance,, Indiana Univ. Math. J., 25 (1976), 933. Google Scholar

[2]

C. O. Alves, F. J. S. A. Correa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type,, Comput. Math. Appl., 49 (2005), 85. doi: 10.1016/j.camwa.2005.01.008. Google Scholar

[3]

P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity,, Nonlinear Anal., 7 (1983), 981. doi: 10.1016/0362-546X(83)90115-3. Google Scholar

[4]

J. Bouchala and P. Drabek, Strong resonance for some quasilinear elliptic equations,, J. Math. Anal. Appl., 245 (2000), 7. doi: 10.1006/jmaa.2000.6713. Google Scholar

[5]

C. Y. Chen, Y. C. Kuo and T. F. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions,, J. Differential Equations, 250 (2011), 1876. doi: 10.1016/j.jde.2010.11.017. Google Scholar

[6]

P. Drábek, On the resonance problem with nonlinearity which has arbitrary linear growth,, J. Math Anal. Appl., 127 (1987), 435. doi: 10.1016/0022-247X(87)90121-1. Google Scholar

[7]

P. Drábek and S. B. Robison, Resonance problems for the $p$-Laplacian,, J. Funct. Anal., 169 (1999), 189. doi: 10.1006/jfan.1999.3501. Google Scholar

[8]

C. P. Gupta, Solvability of a boundary value problem with the nonlinearity satisfying a sign condition,, J. Math. Anal. Appl., 129 (1988), 482. doi: 10.1016/0022-247X(88)90266-1. Google Scholar

[9]

X. M. He and W. M. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbbR^{3}$,, J. Differential Equations, 252 (2011), 1813. doi: 10.1016/j.jde.2011.08.035. Google Scholar

[10]

E. Landesman and A. Lazer, Nonlinear perturbation of linear elliptic boundary value problems at resonance,, J. Math. Mech., 19 (1970), 609. Google Scholar

[11]

T. F. Ma and J. E. Muñoz Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem,, Appl. Math. Lett., 16 (2003), 243. doi: 10.1016/S0893-9659(03)80038-1. Google Scholar

[12]

A. M. Mao and Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P. S. condition,, Nonlinear Anal., 70 (2009), 1275. doi: 10.1016/j.na.2008.02.011. Google Scholar

[13]

J. Mawhin, J. R. Ward and M. Willem, Necessary and sufficient conditions for the solvability of a nonlinear two-point boundary value problem,, Proc. Amer. Math. Soc., 93 (1985), 667. doi: 10.2307/2045542. Google Scholar

[14]

J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", in: Applied Mathematical Sciences, 74 (1989). Google Scholar

[15]

Z. Q. Ou and C. L. Tang, Resonance problems for the $p$-Laplacian systems,, J. Math. Anal. Appl., 345 (2008), 511. doi: 10.1016/j.jmaa.2008.04.001. Google Scholar

[16]

K. Perera and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index,, J. Differential Equations, 221 (2006), 246. doi: 10.1016/j.jde.2005.03.006. Google Scholar

[17]

P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", CBMS Regional Conference Series in Mathematics, 65 (1986). Google Scholar

[18]

E. A. B. Silva, Linking theorems and applications to semilinear elliptic problems at resonance,, Nonlinear Anal., 16 (1991), 455. doi: 10.1016/0362-546X(91)90070-H. Google Scholar

[19]

S. Z. Song and C. L. Tang, Resonance problems for the $p$-Laplacian with a nonlinear boundary condition,, Nonlinear Anal., 64 (2006), 2007. doi: 10.1016/j.na.2005.07.035. Google Scholar

[20]

M. Struwe, "Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,", $3^{rd}$ Edition, (2000). Google Scholar

[21]

J. J. Sun and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type equations,, Nonlinear Anal., 74 (2011), 1212. doi: 10.1016/j.na.2010.09.061. Google Scholar

[22]

C. L. Tang, Solvability for two-point boundary value problems,, J. Math. Anal. Appl., 216 (1997), 368. doi: 10.1006/jmaa.1997.5664. Google Scholar

[23]

C. L. Tang, Solvability of the forced duffing equation at resonance,, J. Math. Anal. Appl., 219 (1998), 110. doi: 10.1006/jmaa.1997.5793. Google Scholar

[24]

C. L. Tang, Solvability of Neumann problem for elliptic equations at resonance,, Nonlinear Anal., 44 (2001), 323. doi: 10.1016/S0362-546X(99)00266-7. Google Scholar

[25]

J. R. Ward, A boundary value problem with a periodic nonlinearity,, Nonlinear Anal., 10 (1986), 207. doi: 10.1016/0362-546X(86)90047-7. Google Scholar

[26]

X. P. Wu and C. L. Tang, Some existence theorems for elliptic resonant problems,, J. Math. Anal. Appl., 264 (2001), 133. doi: 10.1006/jmaa.2001.7660. Google Scholar

[27]

Z. T. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow,, J. Math. Anal. Appl., 317 (2006), 456. doi: 10.1016/j.jmaa.2005.06.102. Google Scholar

[28]

X. X. Zhao and C. L. Tang, Resonance problems for $(p,q)$-Laplacian systems,, Nonlinear Anal., 72 (2010), 1019. doi: 10.1016/j.na.2009.07.043. Google Scholar

show all references

References:
[1]

S. Ahmad, A. C. Lazer and J. L. Paul, Elementary critical point theory and perturbations of elliptic boundary value problems at resonance,, Indiana Univ. Math. J., 25 (1976), 933. Google Scholar

[2]

C. O. Alves, F. J. S. A. Correa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type,, Comput. Math. Appl., 49 (2005), 85. doi: 10.1016/j.camwa.2005.01.008. Google Scholar

[3]

P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity,, Nonlinear Anal., 7 (1983), 981. doi: 10.1016/0362-546X(83)90115-3. Google Scholar

[4]

J. Bouchala and P. Drabek, Strong resonance for some quasilinear elliptic equations,, J. Math. Anal. Appl., 245 (2000), 7. doi: 10.1006/jmaa.2000.6713. Google Scholar

[5]

C. Y. Chen, Y. C. Kuo and T. F. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions,, J. Differential Equations, 250 (2011), 1876. doi: 10.1016/j.jde.2010.11.017. Google Scholar

[6]

P. Drábek, On the resonance problem with nonlinearity which has arbitrary linear growth,, J. Math Anal. Appl., 127 (1987), 435. doi: 10.1016/0022-247X(87)90121-1. Google Scholar

[7]

P. Drábek and S. B. Robison, Resonance problems for the $p$-Laplacian,, J. Funct. Anal., 169 (1999), 189. doi: 10.1006/jfan.1999.3501. Google Scholar

[8]

C. P. Gupta, Solvability of a boundary value problem with the nonlinearity satisfying a sign condition,, J. Math. Anal. Appl., 129 (1988), 482. doi: 10.1016/0022-247X(88)90266-1. Google Scholar

[9]

X. M. He and W. M. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbbR^{3}$,, J. Differential Equations, 252 (2011), 1813. doi: 10.1016/j.jde.2011.08.035. Google Scholar

[10]

E. Landesman and A. Lazer, Nonlinear perturbation of linear elliptic boundary value problems at resonance,, J. Math. Mech., 19 (1970), 609. Google Scholar

[11]

T. F. Ma and J. E. Muñoz Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem,, Appl. Math. Lett., 16 (2003), 243. doi: 10.1016/S0893-9659(03)80038-1. Google Scholar

[12]

A. M. Mao and Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P. S. condition,, Nonlinear Anal., 70 (2009), 1275. doi: 10.1016/j.na.2008.02.011. Google Scholar

[13]

J. Mawhin, J. R. Ward and M. Willem, Necessary and sufficient conditions for the solvability of a nonlinear two-point boundary value problem,, Proc. Amer. Math. Soc., 93 (1985), 667. doi: 10.2307/2045542. Google Scholar

[14]

J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", in: Applied Mathematical Sciences, 74 (1989). Google Scholar

[15]

Z. Q. Ou and C. L. Tang, Resonance problems for the $p$-Laplacian systems,, J. Math. Anal. Appl., 345 (2008), 511. doi: 10.1016/j.jmaa.2008.04.001. Google Scholar

[16]

K. Perera and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index,, J. Differential Equations, 221 (2006), 246. doi: 10.1016/j.jde.2005.03.006. Google Scholar

[17]

P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", CBMS Regional Conference Series in Mathematics, 65 (1986). Google Scholar

[18]

E. A. B. Silva, Linking theorems and applications to semilinear elliptic problems at resonance,, Nonlinear Anal., 16 (1991), 455. doi: 10.1016/0362-546X(91)90070-H. Google Scholar

[19]

S. Z. Song and C. L. Tang, Resonance problems for the $p$-Laplacian with a nonlinear boundary condition,, Nonlinear Anal., 64 (2006), 2007. doi: 10.1016/j.na.2005.07.035. Google Scholar

[20]

M. Struwe, "Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,", $3^{rd}$ Edition, (2000). Google Scholar

[21]

J. J. Sun and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type equations,, Nonlinear Anal., 74 (2011), 1212. doi: 10.1016/j.na.2010.09.061. Google Scholar

[22]

C. L. Tang, Solvability for two-point boundary value problems,, J. Math. Anal. Appl., 216 (1997), 368. doi: 10.1006/jmaa.1997.5664. Google Scholar

[23]

C. L. Tang, Solvability of the forced duffing equation at resonance,, J. Math. Anal. Appl., 219 (1998), 110. doi: 10.1006/jmaa.1997.5793. Google Scholar

[24]

C. L. Tang, Solvability of Neumann problem for elliptic equations at resonance,, Nonlinear Anal., 44 (2001), 323. doi: 10.1016/S0362-546X(99)00266-7. Google Scholar

[25]

J. R. Ward, A boundary value problem with a periodic nonlinearity,, Nonlinear Anal., 10 (1986), 207. doi: 10.1016/0362-546X(86)90047-7. Google Scholar

[26]

X. P. Wu and C. L. Tang, Some existence theorems for elliptic resonant problems,, J. Math. Anal. Appl., 264 (2001), 133. doi: 10.1006/jmaa.2001.7660. Google Scholar

[27]

Z. T. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow,, J. Math. Anal. Appl., 317 (2006), 456. doi: 10.1016/j.jmaa.2005.06.102. Google Scholar

[28]

X. X. Zhao and C. L. Tang, Resonance problems for $(p,q)$-Laplacian systems,, Nonlinear Anal., 72 (2010), 1019. doi: 10.1016/j.na.2009.07.043. Google Scholar

[1]

Maria Do Rosario Grossinho, Rogério Martins. Subharmonic oscillations for some second-order differential equations without Landesman-Lazer conditions. Conference Publications, 2001, 2001 (Special) : 174-181. doi: 10.3934/proc.2001.2001.174

[2]

Qi-Lin Xie, Xing-Ping Wu, Chun-Lei Tang. Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2773-2786. doi: 10.3934/cpaa.2013.12.2773

[3]

Rui-Qi Liu, Chun-Lei Tang, Jia-Feng Liao, Xing-Ping Wu. Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1841-1856. doi: 10.3934/cpaa.2016006

[4]

Mingqi Xiang, Binlin Zhang. A critical fractional p-Kirchhoff type problem involving discontinuous nonlinearity. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 413-433. doi: 10.3934/dcdss.2019027

[5]

Shu-Zhi Song, Shang-Jie Chen, Chun-Lei Tang. Existence of solutions for Kirchhoff type problems with resonance at higher eigenvalues. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6453-6473. doi: 10.3934/dcds.2016078

[6]

Jiafeng Liao, Peng Zhang, Jiu Liu, Chunlei Tang. Existence and multiplicity of positive solutions for a class of Kirchhoff type problems at resonance. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1959-1974. doi: 10.3934/dcdss.2016080

[7]

Jun Wang, Lu Xiao. Existence and concentration of solutions for a Kirchhoff type problem with potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7137-7168. doi: 10.3934/dcds.2016111

[8]

Wenjing Chen. Multiplicity of solutions for a fractional Kirchhoff type problem. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2009-2020. doi: 10.3934/cpaa.2015.14.2009

[9]

Quanqing Li, Kaimin Teng, Xian Wu. Ground states for Kirchhoff-type equations with critical growth. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2623-2638. doi: 10.3934/cpaa.2018124

[10]

Yu Chen, Yanheng Ding, Suhong Li. Existence and concentration for Kirchhoff type equations around topologically critical points of the potential. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1641-1671. doi: 10.3934/cpaa.2017079

[11]

Peng Chen, Xiaochun Liu. Multiplicity of solutions to Kirchhoff type equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2018, 17 (1) : 113-125. doi: 10.3934/cpaa.2018007

[12]

Qilin Xie, Jianshe Yu. Bounded state solutions of Kirchhoff type problems with a critical exponent in high dimension. Communications on Pure & Applied Analysis, 2019, 18 (1) : 129-158. doi: 10.3934/cpaa.2019008

[13]

Yinbin Deng, Wentao Huang. Least energy solutions for fractional Kirchhoff type equations involving critical growth. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1929-1954. doi: 10.3934/dcdss.2019126

[14]

Pablo Amster, Pablo De Nápoli. Non-asymptotic Lazer-Leach type conditions for a nonlinear oscillator. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 757-767. doi: 10.3934/dcds.2011.29.757

[15]

Mohameden Ahmedou, Mohamed Ben Ayed, Marcello Lucia. On a resonant mean field type equation: A "critical point at Infinity" approach. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1789-1818. doi: 10.3934/dcds.2017075

[16]

Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171

[17]

Xiao-Jing Zhong, Chun-Lei Tang. The existence and nonexistence results of ground state nodal solutions for a Kirchhoff type problem. Communications on Pure & Applied Analysis, 2017, 16 (2) : 611-628. doi: 10.3934/cpaa.2017030

[18]

Sami Aouaoui. A multiplicity result for some Kirchhoff-type equations involving exponential growth condition in $\mathbb{R}^2 $. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1351-1370. doi: 10.3934/cpaa.2016.15.1351

[19]

Yijing Sun, Yuxin Tan. Kirchhoff type equations with strong singularities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 181-193. doi: 10.3934/cpaa.2019010

[20]

Hannelore Lisei, Radu Precup, Csaba Varga. A Schechter type critical point result in annular conical domains of a Banach space and applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3775-3789. doi: 10.3934/dcds.2016.36.3775

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]