January  2013, 33(1): 211-223. doi: 10.3934/dcds.2013.33.211

Boundedness and stability for the damped and forced single well Duffing equation

1. 

UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France, France

Received  August 2011 Revised  January 2012 Published  September 2012

By using differential inequalities we improve some estimates of W.S. LOUD for the ultimate bound and asymptotic stability of the solutions to the Duffing equation $ u''+ c{u'} + g(u)= f(t)$ where $c>0$, $f $ is measurable and essentially bounded, and $g$ is continuously differentiable with $g'\ge b>0$.
Citation: Cyrine Fitouri, Alain Haraux. Boundedness and stability for the damped and forced single well Duffing equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 211-223. doi: 10.3934/dcds.2013.33.211
References:
[1]

L. Amerio, Soluzioni quasi periodiche, o limitate, di sistemi differenziali non lineari quasi periodici, o limitati,, Ann. Mat. Pura. Appl., 39 (1955), 97. Google Scholar

[2]

M. Biroli, Sur les solutions bornés et presque péiodiques des éuations et inéuations d'éolution,, Ann. Mat. Pura Appl., 93 (1972), 1. Google Scholar

[3]

M. L. Cartwright and J. E. Littlewood, On non-linear differential equations of the second order,, Ann. Math., 48 (1947), 472. Google Scholar

[4]

C. M. Dafermos, Almost periodic processes and almost periodic solutions of evolution equations, in "Proccedings of a University of Florida International Symposium,", Academic Press, (1977), 43. Google Scholar

[5]

C. Fitouri, "Thesis Dissertation," ch.2,, University of Zürich, (2008). Google Scholar

[6]

C. Fitouri and A. Haraux, Sharp estimates of bounded solutions to some semilinear second order dissipative equations,, J. Math. Pures Appl., 92 (2009), 313. Google Scholar

[7]

A. Haraux, "Nonlinear Evolution Equations: Global Behavior of Solutions,", Springer-Verlag, (1981). Google Scholar

[8]

A. Haraux, "Systèmes Dynamiques Dissipatifs et Applications,", Masson, (1991). Google Scholar

[9]

A. Haraux, On the double well Duffing equation with a small bounded forcing term,, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 29 (2005), 207. Google Scholar

[10]

A. Haraux, Sharp estimates of bounded solutions to some second-order forced dissipative equations,, J. Dynam. Differential Equations, 19 (2007), 915. Google Scholar

[11]

W. S. Loud, On periodic solutions of Duffing's equation with damping,, Journal of Mathematics and Physics, 34 (1955), 173. Google Scholar

[12]

W. S. Loud, Boundedness and convergence of solutions of x''+cx' +g(x) = e(t),, Duke Math. J., 24 (1957), 63. Google Scholar

[13]

W. S. Loud, Periodic solutions of x''+cx' +g(x) = f(t),, Mem. Amer. Math. Soc., 31 (1959), 1. Google Scholar

[14]

Ph. Souplet, Uniqueness and nonuniqueness results for the antiperiodic solutions of some second-order nonlinear evolution equations,, Nonlinear Analysis T.M.A., 26 (1996), 1511. doi: 10.1016/0362-546X(95)00012-K. Google Scholar

show all references

References:
[1]

L. Amerio, Soluzioni quasi periodiche, o limitate, di sistemi differenziali non lineari quasi periodici, o limitati,, Ann. Mat. Pura. Appl., 39 (1955), 97. Google Scholar

[2]

M. Biroli, Sur les solutions bornés et presque péiodiques des éuations et inéuations d'éolution,, Ann. Mat. Pura Appl., 93 (1972), 1. Google Scholar

[3]

M. L. Cartwright and J. E. Littlewood, On non-linear differential equations of the second order,, Ann. Math., 48 (1947), 472. Google Scholar

[4]

C. M. Dafermos, Almost periodic processes and almost periodic solutions of evolution equations, in "Proccedings of a University of Florida International Symposium,", Academic Press, (1977), 43. Google Scholar

[5]

C. Fitouri, "Thesis Dissertation," ch.2,, University of Zürich, (2008). Google Scholar

[6]

C. Fitouri and A. Haraux, Sharp estimates of bounded solutions to some semilinear second order dissipative equations,, J. Math. Pures Appl., 92 (2009), 313. Google Scholar

[7]

A. Haraux, "Nonlinear Evolution Equations: Global Behavior of Solutions,", Springer-Verlag, (1981). Google Scholar

[8]

A. Haraux, "Systèmes Dynamiques Dissipatifs et Applications,", Masson, (1991). Google Scholar

[9]

A. Haraux, On the double well Duffing equation with a small bounded forcing term,, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 29 (2005), 207. Google Scholar

[10]

A. Haraux, Sharp estimates of bounded solutions to some second-order forced dissipative equations,, J. Dynam. Differential Equations, 19 (2007), 915. Google Scholar

[11]

W. S. Loud, On periodic solutions of Duffing's equation with damping,, Journal of Mathematics and Physics, 34 (1955), 173. Google Scholar

[12]

W. S. Loud, Boundedness and convergence of solutions of x''+cx' +g(x) = e(t),, Duke Math. J., 24 (1957), 63. Google Scholar

[13]

W. S. Loud, Periodic solutions of x''+cx' +g(x) = f(t),, Mem. Amer. Math. Soc., 31 (1959), 1. Google Scholar

[14]

Ph. Souplet, Uniqueness and nonuniqueness results for the antiperiodic solutions of some second-order nonlinear evolution equations,, Nonlinear Analysis T.M.A., 26 (1996), 1511. doi: 10.1016/0362-546X(95)00012-K. Google Scholar

[1]

Hongbin Chen, Yi Li. Existence, uniqueness, and stability of periodic solutions of an equation of duffing type. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 793-807. doi: 10.3934/dcds.2007.18.793

[2]

Zhiguo Wang, Yiqian Wang, Daxiong Piao. A new method for the boundedness of semilinear Duffing equations at resonance. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3961-3991. doi: 10.3934/dcds.2016.36.3961

[3]

Yiqian Wang. Boundedness of solutions in a class of Duffing equations with a bounded restore force. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 783-800. doi: 10.3934/dcds.2006.14.783

[4]

Huiping Jin. Boundedness in a class of duffing equations with oscillating potentials via the twist theorem. Communications on Pure & Applied Analysis, 2011, 10 (1) : 179-192. doi: 10.3934/cpaa.2011.10.179

[5]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[6]

Zhibo Cheng, Jingli Ren. Periodic and subharmonic solutions for duffing equation with a singularity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1557-1574. doi: 10.3934/dcds.2012.32.1557

[7]

Zhaosheng Feng, Goong Chen, Sze-Bi Hsu. A qualitative study of the damped duffing equation and applications. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1097-1112. doi: 10.3934/dcdsb.2006.6.1097

[8]

S. Jiménez, Pedro J. Zufiria. Characterizing chaos in a type of fractional Duffing's equation. Conference Publications, 2015, 2015 (special) : 660-669. doi: 10.3934/proc.2015.0660

[9]

Cemil Tunç. Stability, boundedness and uniform boundedness of solutions of nonlinear delay differential equations. Conference Publications, 2011, 2011 (Special) : 1395-1403. doi: 10.3934/proc.2011.2011.1395

[10]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[11]

Sebastián Ferrer, Martin Lara. Families of canonical transformations by Hamilton-Jacobi-Poincaré equation. Application to rotational and orbital motion. Journal of Geometric Mechanics, 2010, 2 (3) : 223-241. doi: 10.3934/jgm.2010.2.223

[12]

Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159

[13]

Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

[14]

Nguyen Thieu Huy, Vu Thi Ngoc Ha, Pham Truong Xuan. Boundedness and stability of solutions to semi-linear equations and applications to fluid dynamics. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2103-2116. doi: 10.3934/cpaa.2016029

[15]

Renato Manfrin. On the boundedness of solutions of the equation $u''+(1+f(t))u=0$. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 991-1008. doi: 10.3934/dcds.2009.23.991

[16]

Masaaki Mizukami. Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2301-2319. doi: 10.3934/dcdsb.2017097

[17]

Wei Mao, Liangjian Hu, Xuerong Mao. Asymptotic boundedness and stability of solutions to hybrid stochastic differential equations with jumps and the Euler-Maruyama approximation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 587-613. doi: 10.3934/dcdsb.2018198

[18]

El Miloud Zaoui, Marc Laforest. Stability and modeling error for the Boltzmann equation. Kinetic & Related Models, 2014, 7 (2) : 401-414. doi: 10.3934/krm.2014.7.401

[19]

Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1375-1385. doi: 10.3934/jimo.2018099

[20]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]