
Previous Article
Axisymmetry of locally bounded solutions to an EulerLagrange system of the weighted HardyLittlewoodSobolev inequality
 DCDS Home
 This Issue

Next Article
Initial trace of positive solutions of a class of degenerate heat equation with absorption
The diffusive logistic model with a free boundary and seasonal succession
1.  Department of Mathematics, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, China, and Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada 
2.  Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NL A1C 5S7 
References:
[1] 
D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, in, 446 (1975), 5. 
[2] 
D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics,, Adv. Math., 30 (1978), 33. doi: 10.1016/00018708(78)901305. 
[3] 
G. Bunting, Y. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model,, Networks and Heterogeneous Media, (). 
[4] 
X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing,, SIAM J. Math. Anal., 32 (2000), 778. doi: 10.1137/S0036141099351693. 
[5] 
D. L. DeAngelis, J. C. Trexler and D. D. Donalson, "Competition Dynamics in a Seasionally Varying Wetland,", Chapter 1, (2009), 1. 
[6] 
Y. Du and Z. M. Guo, Spreadingvanishing dichotomy in the diffusive logistic model with a free boundary II,, J. Differential Equations, 250 (2011), 4336. doi: 10.1016/j.jde.2011.02.011. 
[7] 
Y. Du, Z. M. Guo and R. Peng, A diffusive logistic model with a free boundary in timeperiodic environment,, preprint, (2011). 
[8] 
Y. Du and Z. G. Lin, Spreadingvanishing dichotomy in the diffusive logistic model with a free boundary,, SIAM J. Math. Anal., 42 (2010), 377. doi: 10.1137/090771089. 
[9] 
P. J. DuBowy, Waterfowl communities and seasonal environments: Temporal variabolity in interspecific competition,, Ecology, 69 (1988), 1439. 
[10] 
S.B. Hsu and X.Q. Zhao, A LotkaVolterra competition model with seasonal succession,, J. Math. Biol., 64 (2012), 109. doi: 10.1007/s0028501104086. 
[11] 
S. S. Hu and A. J. Tessier, Seasonal succession and the strength of intra and interspecific competition in a Daphnia assemblage,, Ecology, 76 (1995), 2278. 
[12] 
O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Amer. Math. Soc. Providence, (1968). 
[13] 
X. Liang, Y. Yi and X.Q. Zhao, Spreading speeds and traveling waves for periodic evolution systems,, J. Differential Equations, 231 (2006), 57. doi: 10.1016/j.jde.2006.04.010. 
[14] 
X. Liang and X.Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Comm. Pure Appl. Math., 60 (2007), 1. doi: 10.1002/cpa.20154. 
[15] 
Z. G. Lin, A free boundary problem for a predatorprey model,, Nonlinearity, 20 (2007), 1883. doi: 10.1088/09517715/20/8/004. 
[16] 
E. Litchman and C. A. Klausmeier, Competition of phytoplankton under fluctuating light,, American Naturalist, 157 (2001), 170. 
[17] 
T. R. Malthus, "An Essay on the Principle of Population,", 1798. Printed for J. Johnson in St. Pauls ChurchYard, (1998). 
[18] 
M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology,, Japan J. Appl. Math., 2 (1985), 151. doi: 10.1007/BF03167042. 
[19] 
G. Nadin, The principal eigenvalue of a spacetime periodic parabolic operator,, Ann. Mat. Pura Appl., 188 (2009), 269. doi: 10.1007/s1023100800754. 
[20] 
R. Peng and D. Wei, The periodicparabolic logistic equation on $\R^N$,, Discrete and Continuous Dyn. Syst. Series A, 32 (2012), 619. 
[21] 
H. F. Weinberger, Longtime behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353. doi: 10.1137/0513028. 
[22] 
X.Q. Zhao, "Dynamical Systems in Population Biology,", SpringerVerlag, (2003). 
show all references
References:
[1] 
D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, in, 446 (1975), 5. 
[2] 
D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics,, Adv. Math., 30 (1978), 33. doi: 10.1016/00018708(78)901305. 
[3] 
G. Bunting, Y. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model,, Networks and Heterogeneous Media, (). 
[4] 
X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing,, SIAM J. Math. Anal., 32 (2000), 778. doi: 10.1137/S0036141099351693. 
[5] 
D. L. DeAngelis, J. C. Trexler and D. D. Donalson, "Competition Dynamics in a Seasionally Varying Wetland,", Chapter 1, (2009), 1. 
[6] 
Y. Du and Z. M. Guo, Spreadingvanishing dichotomy in the diffusive logistic model with a free boundary II,, J. Differential Equations, 250 (2011), 4336. doi: 10.1016/j.jde.2011.02.011. 
[7] 
Y. Du, Z. M. Guo and R. Peng, A diffusive logistic model with a free boundary in timeperiodic environment,, preprint, (2011). 
[8] 
Y. Du and Z. G. Lin, Spreadingvanishing dichotomy in the diffusive logistic model with a free boundary,, SIAM J. Math. Anal., 42 (2010), 377. doi: 10.1137/090771089. 
[9] 
P. J. DuBowy, Waterfowl communities and seasonal environments: Temporal variabolity in interspecific competition,, Ecology, 69 (1988), 1439. 
[10] 
S.B. Hsu and X.Q. Zhao, A LotkaVolterra competition model with seasonal succession,, J. Math. Biol., 64 (2012), 109. doi: 10.1007/s0028501104086. 
[11] 
S. S. Hu and A. J. Tessier, Seasonal succession and the strength of intra and interspecific competition in a Daphnia assemblage,, Ecology, 76 (1995), 2278. 
[12] 
O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Amer. Math. Soc. Providence, (1968). 
[13] 
X. Liang, Y. Yi and X.Q. Zhao, Spreading speeds and traveling waves for periodic evolution systems,, J. Differential Equations, 231 (2006), 57. doi: 10.1016/j.jde.2006.04.010. 
[14] 
X. Liang and X.Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Comm. Pure Appl. Math., 60 (2007), 1. doi: 10.1002/cpa.20154. 
[15] 
Z. G. Lin, A free boundary problem for a predatorprey model,, Nonlinearity, 20 (2007), 1883. doi: 10.1088/09517715/20/8/004. 
[16] 
E. Litchman and C. A. Klausmeier, Competition of phytoplankton under fluctuating light,, American Naturalist, 157 (2001), 170. 
[17] 
T. R. Malthus, "An Essay on the Principle of Population,", 1798. Printed for J. Johnson in St. Pauls ChurchYard, (1998). 
[18] 
M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology,, Japan J. Appl. Math., 2 (1985), 151. doi: 10.1007/BF03167042. 
[19] 
G. Nadin, The principal eigenvalue of a spacetime periodic parabolic operator,, Ann. Mat. Pura Appl., 188 (2009), 269. doi: 10.1007/s1023100800754. 
[20] 
R. Peng and D. Wei, The periodicparabolic logistic equation on $\R^N$,, Discrete and Continuous Dyn. Syst. Series A, 32 (2012), 619. 
[21] 
H. F. Weinberger, Longtime behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353. doi: 10.1137/0513028. 
[22] 
X.Q. Zhao, "Dynamical Systems in Population Biology,", SpringerVerlag, (2003). 
[1] 
Wenzhen Gan, Peng Zhou. A revisit to the diffusive logistic model with free boundary condition. Discrete & Continuous Dynamical Systems  B, 2016, 21 (3) : 837847. doi: 10.3934/dcdsb.2016.21.837 
[2] 
Manjun Ma, XiaoQiang Zhao. Monostable waves and spreading speed for a reactiondiffusion model with seasonal succession. Discrete & Continuous Dynamical Systems  B, 2016, 21 (2) : 591606. doi: 10.3934/dcdsb.2016.21.591 
[3] 
Fang Li, Xing Liang, Wenxian Shen. Diffusive KPP equations with free boundaries in time almost periodic environments: I. Spreading and vanishing dichotomy. Discrete & Continuous Dynamical Systems  A, 2016, 36 (6) : 33173338. doi: 10.3934/dcds.2016.36.3317 
[4] 
Qiaoling Chen, Fengquan Li, Feng Wang. A diffusive logistic problem with a free boundary in timeperiodic environment: Favorable habitat or unfavorable habitat. Discrete & Continuous Dynamical Systems  B, 2016, 21 (1) : 1335. doi: 10.3934/dcdsb.2016.21.13 
[5] 
Yilei Tang, Dongmei Xiao, Weinian Zhang, Di Zhu. Dynamics of epidemic models with asymptomatic infection and seasonal succession. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 14071424. doi: 10.3934/mbe.2017073 
[6] 
Gary Bunting, Yihong Du, Krzysztof Krakowski. Spreading speed revisited: Analysis of a free boundary model. Networks & Heterogeneous Media, 2012, 7 (4) : 583603. doi: 10.3934/nhm.2012.7.583 
[7] 
Zhiguo Wang, Hua Nie, Yihong Du. Asymptotic spreading speed for the weak competition system with a free boundary. Discrete & Continuous Dynamical Systems  A, 2019, 39 (9) : 52235262. doi: 10.3934/dcds.2019213 
[8] 
Micah Webster, Patrick Guidotti. Boundary dynamics of a twodimensional diffusive free boundary problem. Discrete & Continuous Dynamical Systems  A, 2010, 26 (2) : 713736. doi: 10.3934/dcds.2010.26.713 
[9] 
Yihong Du, Zhigui Lin. The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor. Discrete & Continuous Dynamical Systems  B, 2014, 19 (10) : 31053132. doi: 10.3934/dcdsb.2014.19.3105 
[10] 
Antonio Suárez. A logistic equation with degenerate diffusion and Robin boundary conditions. Communications on Pure & Applied Analysis, 2008, 7 (5) : 12551267. doi: 10.3934/cpaa.2008.7.1255 
[11] 
Eugenio Montefusco, Benedetta Pellacci, Gianmaria Verzini. Fractional diffusion with Neumann boundary conditions: The logistic equation. Discrete & Continuous Dynamical Systems  B, 2013, 18 (8) : 21752202. doi: 10.3934/dcdsb.2013.18.2175 
[12] 
ChangHong Wu. Spreading speed and traveling waves for a twospecies weak competition system with free boundary. Discrete & Continuous Dynamical Systems  B, 2013, 18 (9) : 24412455. doi: 10.3934/dcdsb.2013.18.2441 
[13] 
Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems  B, 2016, 21 (5) : 14211434. doi: 10.3934/dcdsb.2016003 
[14] 
Igor Kukavica, Amjad Tuffaha. On the 2D free boundary Euler equation. Evolution Equations & Control Theory, 2012, 1 (2) : 297314. doi: 10.3934/eect.2012.1.297 
[15] 
Alexander Quaas, Andrei Rodríguez. Analysis of the attainment of boundary conditions for a nonlocal diffusive HamiltonJacobi equation. Discrete & Continuous Dynamical Systems  A, 2018, 38 (10) : 52215243. doi: 10.3934/dcds.2018231 
[16] 
Jingli Ren, Dandan Zhu, Haiyan Wang. Spreadingvanishing dichotomy in information diffusion in online social networks with intervention. Discrete & Continuous Dynamical Systems  B, 2019, 24 (4) : 18431865. doi: 10.3934/dcdsb.2018240 
[17] 
Hiroshi Matsuzawa. A free boundary problem for the FisherKPP equation with a given moving boundary. Communications on Pure & Applied Analysis, 2018, 17 (5) : 18211852. doi: 10.3934/cpaa.2018087 
[18] 
Jing Wang, Lining Tong. Vanishing viscosity limit of 1d quasilinear parabolic equation with multiple boundary layers. Communications on Pure & Applied Analysis, 2019, 18 (2) : 887910. doi: 10.3934/cpaa.2019043 
[19] 
Yoshikazu Giga, Przemysław Górka, Piotr Rybka. Nonlocal spatially inhomogeneous HamiltonJacobi equation with unusual free boundary. Discrete & Continuous Dynamical Systems  A, 2010, 26 (2) : 493519. doi: 10.3934/dcds.2010.26.493 
[20] 
Andrzej Nowakowski. Variational analysis of semilinear plate equation with free boundary conditions. Discrete & Continuous Dynamical Systems  A, 2015, 35 (7) : 31333154. doi: 10.3934/dcds.2015.35.3133 
2017 Impact Factor: 1.179
Tools
Metrics
Other articles
by authors
[Back to Top]