• Previous Article
    Stochastic perturbations and Ulam's method for W-shaped maps
  • DCDS Home
  • This Issue
  • Next Article
    Global well-posedness and scattering for the defocusing, cubic nonlinear Schrödinger equation when $n = 3$ via a linear-nonlinear decomposition
May  2013, 33(5): 1927-1935. doi: 10.3934/dcds.2013.33.1927

From log Sobolev to Talagrand: A quick proof

1. 

Laboratoire J. A. Dieudonné, Université de Nice, Parc Valrose, 06108 Nice, France

2. 

Institut de Mathématiques de Toulouse, Université de Toulouse, 31062 Toulouse, France

Received  December 2011 Revised  February 2012 Published  December 2012

We provide yet another proof of the Otto-Villani theorem from the log Sobolev inequality to the Talagrand transportation cost inequality valid in arbitrary metric measure spaces. The argument relies on the recent development [2] identifying gradient flows in Hilbert space and in Wassertein space, emphasizing one key step as precisely the root of the Otto-Villani theorem. The approach does not require the doubling property or the validity of the local Poincaré inequality.
Citation: Nicola Gigli, Michel Ledoux. From log Sobolev to Talagrand: A quick proof. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1927-1935. doi: 10.3934/dcds.2013.33.1927
References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, Heat Flow and calculus over spaces with Ricci curvature bounded from below - the compact case,, To appear in Rend. Acc. Naz. Lnice, (). Google Scholar

[2]

_______, Calculus and heat flows in metric measure spaces with Ricci curvature bounded from below,, Preprint (2011), (2011). Google Scholar

[3]

_______, Density of lipschitz functions and equivalence of weak gradients in metric measure spaces,, Preprint (2011), (2011). Google Scholar

[4]

S. Bobkov, I. Gentil and M. Ledoux, Hypercontractivity of Hamilton-Jacobi equations,, J. Math. Pures Appl. (9), 80 (2001), 669. doi: 10.1016/S0021-7824(01)01208-9. Google Scholar

[5]

J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces,, Geom. Funct. Anal., 9 (1999), 428. doi: 10.1007/s000390050094. Google Scholar

[6]

N. Gigli, K. Kuwada and S. Ohta, Heat flow on Alexandrov spaces,, Accepted paper at CPAM (2011), (2011). Google Scholar

[7]

N. Gozlan, A characterization of dimension free concentration in terms of transportation inequalities,, Ann. Probab., 37 (2009), 2480. doi: 10.1214/09-AOP470. Google Scholar

[8]

N. Gozlan and C. Léonard, Transport inequalities. A survey,, Markov Process. Rel. Fields, 16 (2010), 635. Google Scholar

[9]

N. Gozlan, C. Roberto and P.-M. Samson, Characterization of Talagrand's transport-entropy inequalities in metric spaces,, Preprint 2011., (2011). Google Scholar

[10]

J. Heinonen, Nonsmooth calculus,, Bull. Amer. Math. Soc. (N.S.), 44 (2007), 163. doi: 10.1090/S0273-0979-07-01140-8. Google Scholar

[11]

J. Lott and C. Villani, Hamilton-Jacobi semigroup on length spaces and applications,, J. Math. Pures Appl. (9), 88 (2007), 219. doi: 10.1016/j.matpur.2007.06.003. Google Scholar

[12]

F. Otto, The geometry of dissipative evolution equations: the porous medium equation,, Comm. Partial Differential Equations, 26 (2001), 101. doi: 10.1081/PDE-100002243. Google Scholar

[13]

F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality,, J. Funct. Anal., 173 (2000), 361. doi: 10.1006/jfan.1999.3557. Google Scholar

[14]

M. Talagrand, Transportation cost for Gaussian and other product measures,, Geom. Funct. Anal., 6 (1996), 587. doi: 10.1007/BF02249265. Google Scholar

[15]

C. Villani, "Optimal Transport,", Grundlehren der Mathematischen Wissenschaften. [Fundamental Principles of Mathematical Sciences], 338 (2009). doi: 10.1007/978-3-540-71050-9. Google Scholar

show all references

References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, Heat Flow and calculus over spaces with Ricci curvature bounded from below - the compact case,, To appear in Rend. Acc. Naz. Lnice, (). Google Scholar

[2]

_______, Calculus and heat flows in metric measure spaces with Ricci curvature bounded from below,, Preprint (2011), (2011). Google Scholar

[3]

_______, Density of lipschitz functions and equivalence of weak gradients in metric measure spaces,, Preprint (2011), (2011). Google Scholar

[4]

S. Bobkov, I. Gentil and M. Ledoux, Hypercontractivity of Hamilton-Jacobi equations,, J. Math. Pures Appl. (9), 80 (2001), 669. doi: 10.1016/S0021-7824(01)01208-9. Google Scholar

[5]

J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces,, Geom. Funct. Anal., 9 (1999), 428. doi: 10.1007/s000390050094. Google Scholar

[6]

N. Gigli, K. Kuwada and S. Ohta, Heat flow on Alexandrov spaces,, Accepted paper at CPAM (2011), (2011). Google Scholar

[7]

N. Gozlan, A characterization of dimension free concentration in terms of transportation inequalities,, Ann. Probab., 37 (2009), 2480. doi: 10.1214/09-AOP470. Google Scholar

[8]

N. Gozlan and C. Léonard, Transport inequalities. A survey,, Markov Process. Rel. Fields, 16 (2010), 635. Google Scholar

[9]

N. Gozlan, C. Roberto and P.-M. Samson, Characterization of Talagrand's transport-entropy inequalities in metric spaces,, Preprint 2011., (2011). Google Scholar

[10]

J. Heinonen, Nonsmooth calculus,, Bull. Amer. Math. Soc. (N.S.), 44 (2007), 163. doi: 10.1090/S0273-0979-07-01140-8. Google Scholar

[11]

J. Lott and C. Villani, Hamilton-Jacobi semigroup on length spaces and applications,, J. Math. Pures Appl. (9), 88 (2007), 219. doi: 10.1016/j.matpur.2007.06.003. Google Scholar

[12]

F. Otto, The geometry of dissipative evolution equations: the porous medium equation,, Comm. Partial Differential Equations, 26 (2001), 101. doi: 10.1081/PDE-100002243. Google Scholar

[13]

F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality,, J. Funct. Anal., 173 (2000), 361. doi: 10.1006/jfan.1999.3557. Google Scholar

[14]

M. Talagrand, Transportation cost for Gaussian and other product measures,, Geom. Funct. Anal., 6 (1996), 587. doi: 10.1007/BF02249265. Google Scholar

[15]

C. Villani, "Optimal Transport,", Grundlehren der Mathematischen Wissenschaften. [Fundamental Principles of Mathematical Sciences], 338 (2009). doi: 10.1007/978-3-540-71050-9. Google Scholar

[1]

YanYan Li, Tonia Ricciardi. A sharp Sobolev inequality on Riemannian manifolds. Communications on Pure & Applied Analysis, 2003, 2 (1) : 1-31. doi: 10.3934/cpaa.2003.2.1

[2]

Igor E. Verbitsky. The Hessian Sobolev inequality and its extensions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6165-6179. doi: 10.3934/dcds.2015.35.6165

[3]

Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951

[4]

Ugo Bessi. The stochastic value function in metric measure spaces. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1819-1839. doi: 10.3934/dcds.2017076

[5]

Neal Bez, Sanghyuk Lee, Shohei Nakamura, Yoshihiro Sawano. Sharpness of the Brascamp–Lieb inequality in Lorentz spaces. Electronic Research Announcements, 2017, 24: 53-63. doi: 10.3934/era.2017.24.006

[6]

Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085

[7]

Jianqing Chen. Best constant of 3D Anisotropic Sobolev inequality and its applications. Communications on Pure & Applied Analysis, 2010, 9 (3) : 655-666. doi: 10.3934/cpaa.2010.9.655

[8]

Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 935-942. doi: 10.3934/dcds.2015.35.935

[9]

José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138

[10]

Bang-Xian Han. New characterizations of Ricci curvature on RCD metric measure spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4915-4927. doi: 10.3934/dcds.2018214

[11]

Ren-You Zhong, Nan-Jing Huang. Strict feasibility for generalized mixed variational inequality in reflexive Banach spaces. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 261-274. doi: 10.3934/naco.2011.1.261

[12]

Alberto Fiorenza, Anna Mercaldo, Jean Michel Rakotoson. Regularity and uniqueness results in grand Sobolev spaces for parabolic equations with measure data. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 893-906. doi: 10.3934/dcds.2002.8.893

[13]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[14]

Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3939-3953. doi: 10.3934/dcds.2018171

[15]

Jorge A. Becerril, Javier F. Rosenblueth. Necessity for isoperimetric inequality constraints. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1129-1158. doi: 10.3934/dcds.2017047

[16]

Gisella Croce, Bernard Dacorogna. On a generalized Wirtinger inequality. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1329-1341. doi: 10.3934/dcds.2003.9.1329

[17]

Giuseppe Savaré. Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in $RCD (K, \infty)$ metric measure spaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1641-1661. doi: 10.3934/dcds.2014.34.1641

[18]

Vincenzo Recupero. Hysteresis operators in metric spaces. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 773-792. doi: 10.3934/dcdss.2015.8.773

[19]

Felipe Riquelme. Ruelle's inequality in negative curvature. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2809-2825. doi: 10.3934/dcds.2018119

[20]

Hubert L. Bray, Marcus A. Khuri. A Jang equation approach to the Penrose inequality. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 741-766. doi: 10.3934/dcds.2010.27.741

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]