May  2013, 33(5): 1883-1890. doi: 10.3934/dcds.2013.33.1883

No invariant line fields on escaping sets of the family $\lambda e^{iz}+\gamma e^{-iz}$

1. 

Department of Mathematics, Graduate Center, CUNY, 365 Fifth Avenue, New York, NY 10016, United States

2. 

Department of Mathematics, Queens College, Flushing, NY 11367, United States

3. 

Department of Mathematics, Nanjing University, Nanjing 210090, China

Received  September 2011 Revised  August 2012 Published  December 2012

Consider the family $f_{\lambda, \gamma}(z) = \lambda e^{iz}+\gamma e^{-iz}$ where $\lambda$ and $\gamma$ are non-zero complex numbers. It contains the sine family $\lambda \sin z$ and is a natural extension of the sine family. We give a direct proof of that the escaping set $I_{\lambda, \gamma}$ of $f_{\lambda, \gamma}$ supports no $f_{\lambda,\gamma}$-invariant line fields.
Citation: Tao Chen, Yunping Jiang, Gaofei Zhang. No invariant line fields on escaping sets of the family $\lambda e^{iz}+\gamma e^{-iz}$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1883-1890. doi: 10.3934/dcds.2013.33.1883
References:
[1]

M. Aspenberg and W. Bergweiler, Entire functions with Julia sets of positive measure,, Math. Ann., 352 (2012), 27. Google Scholar

[2]

L. Carleson and T. Gamelin, "Complex Dynamics,", Springer-Verlag, (1991). Google Scholar

[3]

B. Karpińska, Area and Hausdorff dimension of the set of accessible points of the Julia sets of $\lambda e^z$ and $\lambda\sin z$,, Fund. Math., 159 (1999), 269. Google Scholar

[4]

A. E. Eremenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions,, Ann. Inst. Fourier (Grenoble), 42 (1992), 989. Google Scholar

[5]

C. McMullen, Area and Hausdorff dimension of Julia sets of entire functions,, Trans. Amer. Math. Soc., 300 (1987), 329. Google Scholar

[6]

C. McMullen, "Complex Dynamics and Renormalization,", Ann. of Math. Studies, 135 (1994). Google Scholar

[7]

C. McMullen, Self-similarity of Siegel disk and Hausdorff dimension of Julia set,, Acta Mathematica, 180 (1998), 247. Google Scholar

[8]

W. De Melo, P. Salomão, and E. Vargas, A full family of multimodel family of mappings on the circle,, Ergodic Theory and Dynamical Systems, 31 (2011), 1325. doi: 10.1017/S0143385710000386. Google Scholar

[9]

L. Rempe, Rigidity of escaping dynamics for transdental entire functions,, Acta Mathematica, 203 (2009), 235. Google Scholar

[10]

L. Rempe and S. van Strien, Absence of line fields and Mane's theorem for non-recurrent transcendental functions,, Trans Amer. Math. Soc., 363 (2011), 203. doi: 10.1090/S0002-9947-2010-05125-6. Google Scholar

[11]

D. Schleicher, The dynamical fine structure of iterated cosine maps and a dimension paradox,, Duke Math. J., 136 (2007), 343. doi: 10.1215/S0012-7094-07-13625-1. Google Scholar

[12]

H. Schubert, Area of Fatou sets of trigonometric functions,, Proc. Amer. Math. Soc., 136 (2008), 1251. Google Scholar

[13]

G. Zhang, On the non-escaping set of $e^{2\pi i\theta}sin(z)$,, Israel J. Math., 165 (2008), 233. Google Scholar

[14]

G. Zhang, On the dynamics of $e^{2\pi i\theta}sin(z)$,, Illinois J. Math., 49 (2005), 1171. Google Scholar

show all references

References:
[1]

M. Aspenberg and W. Bergweiler, Entire functions with Julia sets of positive measure,, Math. Ann., 352 (2012), 27. Google Scholar

[2]

L. Carleson and T. Gamelin, "Complex Dynamics,", Springer-Verlag, (1991). Google Scholar

[3]

B. Karpińska, Area and Hausdorff dimension of the set of accessible points of the Julia sets of $\lambda e^z$ and $\lambda\sin z$,, Fund. Math., 159 (1999), 269. Google Scholar

[4]

A. E. Eremenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions,, Ann. Inst. Fourier (Grenoble), 42 (1992), 989. Google Scholar

[5]

C. McMullen, Area and Hausdorff dimension of Julia sets of entire functions,, Trans. Amer. Math. Soc., 300 (1987), 329. Google Scholar

[6]

C. McMullen, "Complex Dynamics and Renormalization,", Ann. of Math. Studies, 135 (1994). Google Scholar

[7]

C. McMullen, Self-similarity of Siegel disk and Hausdorff dimension of Julia set,, Acta Mathematica, 180 (1998), 247. Google Scholar

[8]

W. De Melo, P. Salomão, and E. Vargas, A full family of multimodel family of mappings on the circle,, Ergodic Theory and Dynamical Systems, 31 (2011), 1325. doi: 10.1017/S0143385710000386. Google Scholar

[9]

L. Rempe, Rigidity of escaping dynamics for transdental entire functions,, Acta Mathematica, 203 (2009), 235. Google Scholar

[10]

L. Rempe and S. van Strien, Absence of line fields and Mane's theorem for non-recurrent transcendental functions,, Trans Amer. Math. Soc., 363 (2011), 203. doi: 10.1090/S0002-9947-2010-05125-6. Google Scholar

[11]

D. Schleicher, The dynamical fine structure of iterated cosine maps and a dimension paradox,, Duke Math. J., 136 (2007), 343. doi: 10.1215/S0012-7094-07-13625-1. Google Scholar

[12]

H. Schubert, Area of Fatou sets of trigonometric functions,, Proc. Amer. Math. Soc., 136 (2008), 1251. Google Scholar

[13]

G. Zhang, On the non-escaping set of $e^{2\pi i\theta}sin(z)$,, Israel J. Math., 165 (2008), 233. Google Scholar

[14]

G. Zhang, On the dynamics of $e^{2\pi i\theta}sin(z)$,, Illinois J. Math., 49 (2005), 1171. Google Scholar

[1]

Luke G. Rogers, Alexander Teplyaev. Laplacians on the basilica Julia set. Communications on Pure & Applied Analysis, 2010, 9 (1) : 211-231. doi: 10.3934/cpaa.2010.9.211

[2]

Artem Dudko. Computability of the Julia set. Nonrecurrent critical orbits. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2751-2778. doi: 10.3934/dcds.2014.34.2751

[3]

Koh Katagata. On a certain kind of polynomials of degree 4 with disconnected Julia set. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 975-987. doi: 10.3934/dcds.2008.20.975

[4]

Volodymyr Nekrashevych. The Julia set of a post-critically finite endomorphism of $\mathbb{PC}^2$. Journal of Modern Dynamics, 2012, 6 (3) : 327-375. doi: 10.3934/jmd.2012.6.327

[5]

Rich Stankewitz. Density of repelling fixed points in the Julia set of a rational or entire semigroup, II. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2583-2589. doi: 10.3934/dcds.2012.32.2583

[6]

Yu-Hao Liang, Wan-Rou Wu, Jonq Juang. Fastest synchronized network and synchrony on the Julia set of complex-valued coupled map lattices. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 173-184. doi: 10.3934/dcdsb.2016.21.173

[7]

Lan Wen. On the preperiodic set. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 237-241. doi: 10.3934/dcds.2000.6.237

[8]

James W. Cannon, Mark H. Meilstrup, Andreas Zastrow. The period set of a map from the Cantor set to itself. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2667-2679. doi: 10.3934/dcds.2013.33.2667

[9]

Nancy Guelman, Jorge Iglesias, Aldo Portela. Examples of minimal set for IFSs. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5253-5269. doi: 10.3934/dcds.2017227

[10]

Mark Comerford. Non-autonomous Julia sets with measurable invariant sequences of line fields. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 629-642. doi: 10.3934/dcds.2013.33.629

[11]

Yu Zhang, Tao Chen. Minimax problems for set-valued mappings with set optimization. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 327-340. doi: 10.3934/naco.2014.4.327

[12]

Sanjit Chatterjee, Chethan Kamath, Vikas Kumar. Private set-intersection with common set-up. Advances in Mathematics of Communications, 2018, 12 (1) : 17-47. doi: 10.3934/amc.2018002

[13]

Maxim Arnold, Walter Craig. On the size of the Navier - Stokes singular set. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1165-1178. doi: 10.3934/dcds.2010.28.1165

[14]

Michel Crouzeix. The annulus as a K-spectral set. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2291-2303. doi: 10.3934/cpaa.2012.11.2291

[15]

Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115

[16]

Jagannathan Gomatam, Isobel McFarlane. Generalisation of the Mandelbrot set to integral functions of quaternions. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 107-116. doi: 10.3934/dcds.1999.5.107

[17]

Rui Kuang, Xiangdong Ye. The return times set and mixing for measure preserving transformations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 817-827. doi: 10.3934/dcds.2007.18.817

[18]

Katja Polotzek, Kathrin Padberg-Gehle, Tobias Jäger. Set-oriented numerical computation of rotation sets. Journal of Computational Dynamics, 2017, 4 (1&2) : 119-141. doi: 10.3934/jcd.2017004

[19]

Sarah Constantin, Robert S. Strichartz, Miles Wheeler. Analysis of the Laplacian and spectral operators on the Vicsek set. Communications on Pure & Applied Analysis, 2011, 10 (1) : 1-44. doi: 10.3934/cpaa.2011.10.1

[20]

Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]