April  2013, 33(4): 1231-1246. doi: 10.3934/dcds.2013.33.1231

Critical points of functionalized Lagrangians

1. 

Department of Mathematics, Michigan State University, East Lansing, MI, 48824

2. 

Nico Holding LLC, 222 W. Adams Street, Chicago, IL, 60606, United States

Received  September 2011 Revised  October 2011 Published  October 2012

We present a novel class of higher order energies motivated by the study of network formation in binary mixtures of functionalized polymers and solvent. For a broad class of Lagrangians, we introduce their functionalized form, which is a higher order energy balancing the square of the variational derivative against the original energy. We show that the functionalized energies have global minimizers over several natural spaces of admissible functions. The critical points of the functionalized Lagrangian contain those of the original Lagrangian, however we demonstrate that for a sufficient strength of the functionalization all the critical points of the original Lagrangian are saddle points of the functionalized Lagrangian, and the global minima is a new structure.
Citation: Keith Promislow, Hang Zhang. Critical points of functionalized Lagrangians. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1231-1246. doi: 10.3934/dcds.2013.33.1231
References:
[1]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial energy,, J. Chem. Phys., 28 (1958), 258. Google Scholar

[2]

P. Canham, Minimum energy of bending as a possible explanation of biconcave shape of human red blood cell,, J. Theor. Biol., 26 (1970), 61. doi: 10.1016/S0022-5193(70)80032-7. Google Scholar

[3]

E. Crossland, M. Kamperman, M. Nedelcu, C. Ducati, U. Wiesner, D. Smilgies, G. Toombes, M. Hillmyer, S. Ludwigs, U. Steiner and H. Snaith, A Bicontinuous double gyroid hybrid solar cell,, Nano Letters, 9 (2009), 2807. doi: 10.1021/nl803174p. Google Scholar

[4]

Qiang Du, Chun Liu, Rolf Ryham and Xiaoqiang Wang, A phase field formulation of the Willmore problem,, Nonlinearity, 18 (2005), 1249. Google Scholar

[5]

L. C. Evans, "Partial Differential Equations,", American Mathematical Society, (2000). Google Scholar

[6]

N. Gavish, G. Hayrapetyan, K. Promislow and L. Yang, Curvature driven flow of bi-layer interfaces,, Physica D, 240 (2011), 675. doi: 10.1016/j.physd.2010.11.016. Google Scholar

[7]

G. Gompper and M. Schick, Correlation between structural and interfacial properties of amphillic systems,, Phys. Rev. Lett., 65 (1990), 1116. doi: 10.1103/PhysRevLett.65.1116. Google Scholar

[8]

W. Helfrich, Elastic properties of lipid bilayers - theory and possible experiments,, Zeitshcrift fur naturforschung C, 28 (1973), 693. Google Scholar

[9]

William Hsu and Timothy Gierke, Ion transport and clustering in Nafion perfluorinated membranes,, J. Membrane Science, 13 (1983), 307. doi: 10.1016/S0376-7388(00)81563-X. Google Scholar

[10]

Kun-Mu Lee, Chih-Yu Hsu, Wei-Hao Chiu, Meng-Chin Tsui, Yung-Liang Tung, Song-Yeu Tsai and Kuo-Chuan Ho, Dye-sensitized solar cells with mirco-porous TiO$_2$ electrode and gel polymer electrolytes prepared by in situ cross-link reaction,, Solar Energy Materials & Solar cells, 93 (2009), 2003. Google Scholar

[11]

Roger Moser, A higher order asymptotic problem related to phase transition,, SIAM Journal Math. Anal., 37 (2005), 712. doi: 10.1016/j.ijpharm.2004.11.015. Google Scholar

[12]

L. Modica, The gradient theory of phase transitions and the minimal interface criterion,, Arch. Rational. Mech. Anal., 98 (1987), 123. Google Scholar

[13]

J. Peet, A. Heeger and G. Bazan, "Plastic'' Solar cells: Self-assembly of bulk hetrojunction nanomaterials by spontaneous phase separation,, Accounts of Chemical Research, 42 (2009), 1700. doi: 10.1016/j.ssc.2008.12.019. Google Scholar

[14]

K. Promislow and B. Wetton, PEM fuel cells: A mathematical overview,, SIAM Math. Analysis, 70 (2009), 369. Google Scholar

[15]

Matthias Röger and Reiner Schätzle, On a modified conjecture of De Giorgi,, Math. Z., 254 (2006), 675. Google Scholar

[16]

L. Rubatat, G. Gebel and O. Diat, Fibriallar structure of Nafion: Matching Fourier and real space studies of corresponding films and solutions,, Macromolecules, 2004 (): 7772. Google Scholar

[17]

U. Schwarz and G. Gompper, Bicontinuous surfaces in self-assembled amphiphilic systems,, in, 600 (2002), 107. Google Scholar

[18]

P. Sternberg, The effect of a singular perturbation on nonconvex variational problems,, Arch. Rational Mech. Anal., 101 (1988), 209. Google Scholar

[19]

M. Struwe, "Variational Methods,", Springer-Verlag, (1990). Google Scholar

show all references

References:
[1]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial energy,, J. Chem. Phys., 28 (1958), 258. Google Scholar

[2]

P. Canham, Minimum energy of bending as a possible explanation of biconcave shape of human red blood cell,, J. Theor. Biol., 26 (1970), 61. doi: 10.1016/S0022-5193(70)80032-7. Google Scholar

[3]

E. Crossland, M. Kamperman, M. Nedelcu, C. Ducati, U. Wiesner, D. Smilgies, G. Toombes, M. Hillmyer, S. Ludwigs, U. Steiner and H. Snaith, A Bicontinuous double gyroid hybrid solar cell,, Nano Letters, 9 (2009), 2807. doi: 10.1021/nl803174p. Google Scholar

[4]

Qiang Du, Chun Liu, Rolf Ryham and Xiaoqiang Wang, A phase field formulation of the Willmore problem,, Nonlinearity, 18 (2005), 1249. Google Scholar

[5]

L. C. Evans, "Partial Differential Equations,", American Mathematical Society, (2000). Google Scholar

[6]

N. Gavish, G. Hayrapetyan, K. Promislow and L. Yang, Curvature driven flow of bi-layer interfaces,, Physica D, 240 (2011), 675. doi: 10.1016/j.physd.2010.11.016. Google Scholar

[7]

G. Gompper and M. Schick, Correlation between structural and interfacial properties of amphillic systems,, Phys. Rev. Lett., 65 (1990), 1116. doi: 10.1103/PhysRevLett.65.1116. Google Scholar

[8]

W. Helfrich, Elastic properties of lipid bilayers - theory and possible experiments,, Zeitshcrift fur naturforschung C, 28 (1973), 693. Google Scholar

[9]

William Hsu and Timothy Gierke, Ion transport and clustering in Nafion perfluorinated membranes,, J. Membrane Science, 13 (1983), 307. doi: 10.1016/S0376-7388(00)81563-X. Google Scholar

[10]

Kun-Mu Lee, Chih-Yu Hsu, Wei-Hao Chiu, Meng-Chin Tsui, Yung-Liang Tung, Song-Yeu Tsai and Kuo-Chuan Ho, Dye-sensitized solar cells with mirco-porous TiO$_2$ electrode and gel polymer electrolytes prepared by in situ cross-link reaction,, Solar Energy Materials & Solar cells, 93 (2009), 2003. Google Scholar

[11]

Roger Moser, A higher order asymptotic problem related to phase transition,, SIAM Journal Math. Anal., 37 (2005), 712. doi: 10.1016/j.ijpharm.2004.11.015. Google Scholar

[12]

L. Modica, The gradient theory of phase transitions and the minimal interface criterion,, Arch. Rational. Mech. Anal., 98 (1987), 123. Google Scholar

[13]

J. Peet, A. Heeger and G. Bazan, "Plastic'' Solar cells: Self-assembly of bulk hetrojunction nanomaterials by spontaneous phase separation,, Accounts of Chemical Research, 42 (2009), 1700. doi: 10.1016/j.ssc.2008.12.019. Google Scholar

[14]

K. Promislow and B. Wetton, PEM fuel cells: A mathematical overview,, SIAM Math. Analysis, 70 (2009), 369. Google Scholar

[15]

Matthias Röger and Reiner Schätzle, On a modified conjecture of De Giorgi,, Math. Z., 254 (2006), 675. Google Scholar

[16]

L. Rubatat, G. Gebel and O. Diat, Fibriallar structure of Nafion: Matching Fourier and real space studies of corresponding films and solutions,, Macromolecules, 2004 (): 7772. Google Scholar

[17]

U. Schwarz and G. Gompper, Bicontinuous surfaces in self-assembled amphiphilic systems,, in, 600 (2002), 107. Google Scholar

[18]

P. Sternberg, The effect of a singular perturbation on nonconvex variational problems,, Arch. Rational Mech. Anal., 101 (1988), 209. Google Scholar

[19]

M. Struwe, "Variational Methods,", Springer-Verlag, (1990). Google Scholar

[1]

Fausto Cavalli, Giovanni Naldi. A Wasserstein approach to the numerical solution of the one-dimensional Cahn-Hilliard equation. Kinetic & Related Models, 2010, 3 (1) : 123-142. doi: 10.3934/krm.2010.3.123

[2]

Ciprian G. Gal, Maurizio Grasselli. Longtime behavior of nonlocal Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 145-179. doi: 10.3934/dcds.2014.34.145

[3]

Alain Miranville. Existence of solutions for Cahn-Hilliard type equations. Conference Publications, 2003, 2003 (Special) : 630-637. doi: 10.3934/proc.2003.2003.630

[4]

Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207

[5]

Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013

[6]

Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033

[7]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[8]

Christopher P. Grant. Grain sizes in the discrete Allen-Cahn and Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 127-146. doi: 10.3934/dcds.2001.7.127

[9]

Jie Shen, Xiaofeng Yang. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1669-1691. doi: 10.3934/dcds.2010.28.1669

[10]

Shixing Li, Dongming Yan. On the steady state bifurcation of the Cahn-Hilliard/Allen-Cahn system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3077-3088. doi: 10.3934/dcdsb.2018301

[11]

Alain Miranville, Wafa Saoud, Raafat Talhouk. On the Cahn-Hilliard/Allen-Cahn equations with singular potentials. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3633-3651. doi: 10.3934/dcdsb.2018308

[12]

Elena Bonetti, Pierluigi Colli, Luca Scarpa, Giuseppe Tomassetti. A doubly nonlinear Cahn-Hilliard system with nonlinear viscosity. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1001-1022. doi: 10.3934/cpaa.2018049

[13]

Dirk Blömker, Bernhard Gawron, Thomas Wanner. Nucleation in the one-dimensional stochastic Cahn-Hilliard model. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 25-52. doi: 10.3934/dcds.2010.27.25

[14]

Pierluigi Colli, Gianni Gilardi, Paolo Podio-Guidugli, Jürgen Sprekels. An asymptotic analysis for a nonstandard Cahn-Hilliard system with viscosity. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 353-368. doi: 10.3934/dcdss.2013.6.353

[15]

Pierluigi Colli, Gianni Gilardi, Danielle Hilhorst. On a Cahn-Hilliard type phase field system related to tumor growth. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2423-2442. doi: 10.3934/dcds.2015.35.2423

[16]

Annalisa Iuorio, Stefano Melchionna. Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3765-3788. doi: 10.3934/dcds.2018163

[17]

Dimitra Antonopoulou, Georgia Karali, Georgios T. Kossioris. Asymptotics for a generalized Cahn-Hilliard equation with forcing terms. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1037-1054. doi: 10.3934/dcds.2011.30.1037

[18]

Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Phase transition and separation in compressible Cahn-Hilliard fluids. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 73-88. doi: 10.3934/dcdsb.2014.19.73

[19]

Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31

[20]

Irena Pawłow, Wojciech M. Zajączkowski. On a class of sixth order viscous Cahn-Hilliard type equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 517-546. doi: 10.3934/dcdss.2013.6.517

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]