March  2013, 33(3): 1157-1175. doi: 10.3934/dcds.2013.33.1157

On the stability of the Lagrangian homographic solutions in a curved three-body problem on $\mathbb{S}^2$

1. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Barcelona

2. 

Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, 08007 Barcelona

Received  May 2011 Revised  November 2011 Published  October 2012

The problem of three bodies with equal masses in $\mathbb{S}^2$ is known to have Lagrangian homographic orbits. We study the linear stability and also a "practical'' (or effective) stability of these orbits on the unit sphere.
Citation: Regina Martínez, Carles Simó. On the stability of the Lagrangian homographic solutions in a curved three-body problem on $\mathbb{S}^2$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1157-1175. doi: 10.3934/dcds.2013.33.1157
References:
[1]

C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, Users' guide to PARI/GP,, (freely available from \url{http://pari.math.u-bordeaux.fr/})., (). Google Scholar

[2]

F. Diacu and E. Pérez-Chavela, Homographic solutions of the curved 3-body problem,, Journal of Differential Equations, 250 (2011), 340. doi: 10.1016/j.jde.2010.08.011. Google Scholar

[3]

A. Giorgilli, A. Delshams, E. Fontich, L. Galgani and C. Simó, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem,, Journal of Differential Equations, 77 (1989), 167. doi: 10.1016/0022-0396(89)90161-7. Google Scholar

[4]

T. Kapela and C. Simó, Rigorous KAM results around arbitrary periodic orbits for Hamiltonian systems,, Preprint, (). Google Scholar

[5]

R. Martínez, A. Samà and C. Simó, "Stability of Homographic Solutions of the Planar Three-Body Problem with Homogeneous Potentials,", Proceedings EQUADIFF (2003), (2003). Google Scholar

[6]

R. Martínez, A. Samà and C. Simó, Stability diagram for 4D linear periodic systems with applications to homographic solutions,, Journal of Differential Equations, 226 (2006), 619. doi: 10.1016/j.jde.2006.01.014. Google Scholar

[7]

R. Martínez, A. Samà and C. Simó, Analysis of the stability of a family of singular-limit linear periodic systems in $R^4.$ applications,, Journal of Differential Equations, 226 (2006), 652. doi: 10.1016/j.jde.2005.09.012. Google Scholar

[8]

C. Siegel and J. Moser, "Lectures on Celestial Mechanics,", Springer, (1971). Google Scholar

[9]

C. Simó, On the analytical and numerical approximation of invariant manifolds,, Modern methods in celestial mechanics, (1990), 285. Google Scholar

[10]

E. T. Whittaker, "A Treatise on the Analytical Dynamics of Particles and Rigid Bodies,", Cambridge Univ. Press, (1970). Google Scholar

show all references

References:
[1]

C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, Users' guide to PARI/GP,, (freely available from \url{http://pari.math.u-bordeaux.fr/})., (). Google Scholar

[2]

F. Diacu and E. Pérez-Chavela, Homographic solutions of the curved 3-body problem,, Journal of Differential Equations, 250 (2011), 340. doi: 10.1016/j.jde.2010.08.011. Google Scholar

[3]

A. Giorgilli, A. Delshams, E. Fontich, L. Galgani and C. Simó, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem,, Journal of Differential Equations, 77 (1989), 167. doi: 10.1016/0022-0396(89)90161-7. Google Scholar

[4]

T. Kapela and C. Simó, Rigorous KAM results around arbitrary periodic orbits for Hamiltonian systems,, Preprint, (). Google Scholar

[5]

R. Martínez, A. Samà and C. Simó, "Stability of Homographic Solutions of the Planar Three-Body Problem with Homogeneous Potentials,", Proceedings EQUADIFF (2003), (2003). Google Scholar

[6]

R. Martínez, A. Samà and C. Simó, Stability diagram for 4D linear periodic systems with applications to homographic solutions,, Journal of Differential Equations, 226 (2006), 619. doi: 10.1016/j.jde.2006.01.014. Google Scholar

[7]

R. Martínez, A. Samà and C. Simó, Analysis of the stability of a family of singular-limit linear periodic systems in $R^4.$ applications,, Journal of Differential Equations, 226 (2006), 652. doi: 10.1016/j.jde.2005.09.012. Google Scholar

[8]

C. Siegel and J. Moser, "Lectures on Celestial Mechanics,", Springer, (1971). Google Scholar

[9]

C. Simó, On the analytical and numerical approximation of invariant manifolds,, Modern methods in celestial mechanics, (1990), 285. Google Scholar

[10]

E. T. Whittaker, "A Treatise on the Analytical Dynamics of Particles and Rigid Bodies,", Cambridge Univ. Press, (1970). Google Scholar

[1]

Gianni Arioli. Branches of periodic orbits for the planar restricted 3-body problem. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 745-755. doi: 10.3934/dcds.2004.11.745

[2]

Qunyao Yin, Shiqing Zhang. New periodic solutions for the circular restricted 3-body and 4-body problems. Communications on Pure & Applied Analysis, 2010, 9 (1) : 249-260. doi: 10.3934/cpaa.2010.9.249

[3]

Giovanni F. Gronchi, Chiara Tardioli. The evolution of the orbit distance in the double averaged restricted 3-body problem with crossing singularities. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1323-1344. doi: 10.3934/dcdsb.2013.18.1323

[4]

Alain Chenciner, Jacques Féjoz. The flow of the equal-mass spatial 3-body problem in the neighborhood of the equilateral relative equilibrium. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 421-438. doi: 10.3934/dcdsb.2008.10.421

[5]

Elbaz I. Abouelmagd, Juan Luis García Guirao, Jaume Llibre. Periodic orbits for the perturbed planar circular restricted 3–body problem. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1007-1020. doi: 10.3934/dcdsb.2019003

[6]

Volodymyr Pichkur. On practical stability of differential inclusions using Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1977-1986. doi: 10.3934/dcdsb.2017116

[7]

Sergey V. Bolotin, Piero Negrini. Variational approach to second species periodic solutions of Poincaré of the 3 body problem. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1009-1032. doi: 10.3934/dcds.2013.33.1009

[8]

Sohrab Shahshahani. Stability of stationary wave maps from a curved background to a sphere. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3857-3909. doi: 10.3934/dcds.2016.36.3857

[9]

Hirokazu Ninomiya, Masaharu Taniguchi. Global stability of traveling curved fronts in the Allen-Cahn equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 819-832. doi: 10.3934/dcds.2006.15.819

[10]

Xiaojun Chang, Tiancheng Ouyang, Duokui Yan. Linear stability of the criss-cross orbit in the equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5971-5991. doi: 10.3934/dcds.2016062

[11]

Qinglong Zhou, Yongchao Zhang. Analytic results for the linear stability of the equilibrium point in Robe's restricted elliptic three-body problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1763-1787. doi: 10.3934/dcds.2017074

[12]

Hadia H. Selim, Juan L. G. Guirao, Elbaz I. Abouelmagd. Libration points in the restricted three-body problem: Euler angles, existence and stability. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 703-710. doi: 10.3934/dcdss.2019044

[13]

Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Exponential stability of the solutions to the Boltzmann equation for the Benard problem. Kinetic & Related Models, 2012, 5 (4) : 673-695. doi: 10.3934/krm.2012.5.673

[14]

Junxiong Jia, Jigen Peng, Kexue Li. On the decay and stability of global solutions to the 3D inhomogeneous MHD system. Communications on Pure & Applied Analysis, 2017, 16 (3) : 745-780. doi: 10.3934/cpaa.2017036

[15]

Nai-Chia Chen. Symmetric periodic orbits in three sub-problems of the $N$-body problem. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1523-1548. doi: 10.3934/dcdsb.2014.19.1523

[16]

Richard Moeckel. A topological existence proof for the Schubart orbits in the collinear three-body problem. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 609-620. doi: 10.3934/dcdsb.2008.10.609

[17]

Marcel Guardia, Tere M. Seara, Pau Martín, Lara Sabbagh. Oscillatory orbits in the restricted elliptic planar three body problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 229-256. doi: 10.3934/dcds.2017009

[18]

Jungsoo Kang. Some remarks on symmetric periodic orbits in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5229-5245. doi: 10.3934/dcds.2014.34.5229

[19]

Daniel Offin, Hildeberto Cabral. Hyperbolicity for symmetric periodic orbits in the isosceles three body problem. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 379-392. doi: 10.3934/dcdss.2009.2.379

[20]

Florin Diacu, Shuqiang Zhu. Almost all 3-body relative equilibria on $ \mathbb S^2 $ and $ \mathbb H^2 $ are inclined. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-13. doi: 10.3934/dcdss.2020067

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]