March  2013, 33(3): 1089-1112. doi: 10.3934/dcds.2013.33.1089

Transition map and shadowing lemma for normally hyperbolic invariant manifolds

1. 

Departament de Matemática Aplicada I, ETSEIB-UPC, 08028 Barcelona

2. 

School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, United States

3. 

Departament de Matemática Aplicada I, ETSEIB-UPC, 08028 Barcelona,, Spain

Received  April 2011 Revised  December 2011 Published  October 2012

For a given a normally hyperbolic invariant manifold, whose stable and unstable manifolds intersect transversally, we consider several tools and techniques to detect trajectories with prescribed itineraries: the scattering map, the transition map, the method of correctly aligned windows, and the shadowing lemma. We provide an user's guide on how to apply these tools and techniques to detect unstable orbits in a Hamiltonian system. This consists in the following steps: (i) computation of the scattering map and of the transition map for the Hamiltonian flow, (ii) reduction to the scattering map and to the transition map, respectively, for the return map to some surface of section, (iii) construction of sequences of windows within the surface of section, with the successive pairs of windows correctly aligned, alternately, under the transition map, and under some power of the inner map, (iv) detection of trajectories which follow closely those windows. We illustrate this strategy with two models: the large gap problem for nearly integrable Hamiltonian systems, and the the spatial circular restricted three-body problem.
Citation: Amadeu Delshams, Marian Gidea, Pablo Roldán. Transition map and shadowing lemma for normally hyperbolic invariant manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1089-1112. doi: 10.3934/dcds.2013.33.1089
References:
[1]

V. I. Arnold, Instability of dynamical systems with several degrees of freedom,, Sov. Math. Doklady, 5 (1964), 581. Google Scholar

[2]

K. Burns and M. Gidea, "Differential Geometry and Topology. With a View to Dynamical Systems,'', Studies in Advanced Mathematics. Chapman & Hall/CRC, (2005). Google Scholar

[3]

J. Cresson and C. Guillet, Hyperbolicity versus partial-hyperbolicity and the transversality-torsion phenomenon,, J. Differential Equations, 244 (2008), 2123. doi: 10.1016/j.jde.2008.02.009. Google Scholar

[4]

A. Delshams, M. Gidea and P. Roldan, Arnold's mechanism of diffusion in the spatial circular restricted three-body problem: A semi-numerical argument,, preprint, (2010). Google Scholar

[5]

A. Delshams, R. de la Llave and T. M. Seara, A geometric approach to the existence of orbits with unbounded energy in generic periodic perturbations by a potential of generic geodesic flows of $T^2$,, Comm. Math. Phys., 209 (2000), 353. Google Scholar

[6]

A. Delshams, R. de la Llave and T. M. Seara, A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristics and rigorous verification on a model,, Mem. Amer. Math. Soc., 179 (2006). Google Scholar

[7]

A. Delshams, R. de la Llave and T. M. Seara, Geometric properties of the scattering map of a normally hyperbolic invariant manifold,, Adv. Math., 217 (2008), 1096. doi: 10.1016/j.aim.2007.08.014. Google Scholar

[8]

A. Delshams, M. Gidea, R. de la Llave and T. M. Seara, Geometric approaches to the problem of instability in Hamiltonian systems. An informal presentation,, in (Hamiltonian dynamical systems and applications), (2008), 285. Google Scholar

[9]

A. Delshams, J. Masdemont and P. Roldán, Computing the scattering map in the spatial Hill's problem,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 455. doi: 10.3934/dcdsb.2008.10.455. Google Scholar

[10]

R. W. Easton, Homoclinic phenomena in Hamiltonian systems with several degrees of freedom,, J. Differential Equations, 29 (1978), 241. doi: 10.1016/0022-0396(78)90123-7. Google Scholar

[11]

N. Fenichel, Asymptotic stability with rate conditions,, Indiana Univ. Math. J., 23 (): 1109. Google Scholar

[12]

A. García, Transition tori near an elliptic fixed point,, Discrete Contin. Dynam. Systems, 6 (2000), 381. Google Scholar

[13]

M. Gidea and R. de la Llave, Topological methods in the instability problem of Hamiltonian systems,, Discrete Contin. Dyn. Syst., 14 (2006), 295. Google Scholar

[14]

M. Gidea and C. Robinson, Topologically crossing heteroclinic connections to invariant tori,, J. Differential Equations, 193 (2003), 49. doi: 10.1016/S0022-0396(03)00065-2. Google Scholar

[15]

M. Gidea and C. Robinson, Obstruction argument for transition chains of tori interspersed with gaps,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 393. Google Scholar

[16]

M. Gidea, and C. Robinson, Diffusion along transition chains of invariant tori and Aubry-Mather sets,, Ergodic Theory and Dynamical Systems, (). doi: 10.1017/S0143385712000363. Google Scholar

[17]

M. W. Hirsch, C. C. Pugh and M. Shub, "Invariant Manifolds,'', Lecture Notes in Math., (1977). Google Scholar

[18]

H. Hofer, K. Wysocki and E. Zehnder, The dynamics on three-dimensional strictly convex energy surfaces,, Ann. of Math. (2), 148 (1998), 197. Google Scholar

[19]

J. P. Marco, A normally hyperbolic lambda lemma with applications to diffusion,, Preprint, (2008). Google Scholar

[20]

C. Pugh and M. Shub, Linearization of normally hyperbolic diffeomorphisms and flows,, Invent. Math., 10 (1970), 187. doi: 10.1007/BF01403247. Google Scholar

[21]

C. Robinson, "Dynamical Systems. Stability, Symbolic Dynamics, and Chaos,'', Studies in Advanced Mathematics. CRC Press, (1999). Google Scholar

[22]

P. Zgliczyński and M. Gidea, Covering relations for multidimensional dynamical systems,, J. Differential Equations, 202 (2004), 32. doi: 10.1016/j.jde.2004.03.013. Google Scholar

show all references

References:
[1]

V. I. Arnold, Instability of dynamical systems with several degrees of freedom,, Sov. Math. Doklady, 5 (1964), 581. Google Scholar

[2]

K. Burns and M. Gidea, "Differential Geometry and Topology. With a View to Dynamical Systems,'', Studies in Advanced Mathematics. Chapman & Hall/CRC, (2005). Google Scholar

[3]

J. Cresson and C. Guillet, Hyperbolicity versus partial-hyperbolicity and the transversality-torsion phenomenon,, J. Differential Equations, 244 (2008), 2123. doi: 10.1016/j.jde.2008.02.009. Google Scholar

[4]

A. Delshams, M. Gidea and P. Roldan, Arnold's mechanism of diffusion in the spatial circular restricted three-body problem: A semi-numerical argument,, preprint, (2010). Google Scholar

[5]

A. Delshams, R. de la Llave and T. M. Seara, A geometric approach to the existence of orbits with unbounded energy in generic periodic perturbations by a potential of generic geodesic flows of $T^2$,, Comm. Math. Phys., 209 (2000), 353. Google Scholar

[6]

A. Delshams, R. de la Llave and T. M. Seara, A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristics and rigorous verification on a model,, Mem. Amer. Math. Soc., 179 (2006). Google Scholar

[7]

A. Delshams, R. de la Llave and T. M. Seara, Geometric properties of the scattering map of a normally hyperbolic invariant manifold,, Adv. Math., 217 (2008), 1096. doi: 10.1016/j.aim.2007.08.014. Google Scholar

[8]

A. Delshams, M. Gidea, R. de la Llave and T. M. Seara, Geometric approaches to the problem of instability in Hamiltonian systems. An informal presentation,, in (Hamiltonian dynamical systems and applications), (2008), 285. Google Scholar

[9]

A. Delshams, J. Masdemont and P. Roldán, Computing the scattering map in the spatial Hill's problem,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 455. doi: 10.3934/dcdsb.2008.10.455. Google Scholar

[10]

R. W. Easton, Homoclinic phenomena in Hamiltonian systems with several degrees of freedom,, J. Differential Equations, 29 (1978), 241. doi: 10.1016/0022-0396(78)90123-7. Google Scholar

[11]

N. Fenichel, Asymptotic stability with rate conditions,, Indiana Univ. Math. J., 23 (): 1109. Google Scholar

[12]

A. García, Transition tori near an elliptic fixed point,, Discrete Contin. Dynam. Systems, 6 (2000), 381. Google Scholar

[13]

M. Gidea and R. de la Llave, Topological methods in the instability problem of Hamiltonian systems,, Discrete Contin. Dyn. Syst., 14 (2006), 295. Google Scholar

[14]

M. Gidea and C. Robinson, Topologically crossing heteroclinic connections to invariant tori,, J. Differential Equations, 193 (2003), 49. doi: 10.1016/S0022-0396(03)00065-2. Google Scholar

[15]

M. Gidea and C. Robinson, Obstruction argument for transition chains of tori interspersed with gaps,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 393. Google Scholar

[16]

M. Gidea, and C. Robinson, Diffusion along transition chains of invariant tori and Aubry-Mather sets,, Ergodic Theory and Dynamical Systems, (). doi: 10.1017/S0143385712000363. Google Scholar

[17]

M. W. Hirsch, C. C. Pugh and M. Shub, "Invariant Manifolds,'', Lecture Notes in Math., (1977). Google Scholar

[18]

H. Hofer, K. Wysocki and E. Zehnder, The dynamics on three-dimensional strictly convex energy surfaces,, Ann. of Math. (2), 148 (1998), 197. Google Scholar

[19]

J. P. Marco, A normally hyperbolic lambda lemma with applications to diffusion,, Preprint, (2008). Google Scholar

[20]

C. Pugh and M. Shub, Linearization of normally hyperbolic diffeomorphisms and flows,, Invent. Math., 10 (1970), 187. doi: 10.1007/BF01403247. Google Scholar

[21]

C. Robinson, "Dynamical Systems. Stability, Symbolic Dynamics, and Chaos,'', Studies in Advanced Mathematics. CRC Press, (1999). Google Scholar

[22]

P. Zgliczyński and M. Gidea, Covering relations for multidimensional dynamical systems,, J. Differential Equations, 202 (2004), 32. doi: 10.1016/j.jde.2004.03.013. Google Scholar

[1]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[2]

Edward Belbruno. Random walk in the three-body problem and applications. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 519-540. doi: 10.3934/dcdss.2008.1.519

[3]

Richard Moeckel. A topological existence proof for the Schubart orbits in the collinear three-body problem. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 609-620. doi: 10.3934/dcdsb.2008.10.609

[4]

Mitsuru Shibayama. Non-integrability of the collinear three-body problem. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 299-312. doi: 10.3934/dcds.2011.30.299

[5]

Richard Moeckel. A proof of Saari's conjecture for the three-body problem in $\R^d$. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 631-646. doi: 10.3934/dcdss.2008.1.631

[6]

Jungsoo Kang. Some remarks on symmetric periodic orbits in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5229-5245. doi: 10.3934/dcds.2014.34.5229

[7]

Hiroshi Ozaki, Hiroshi Fukuda, Toshiaki Fujiwara. Determination of motion from orbit in the three-body problem. Conference Publications, 2011, 2011 (Special) : 1158-1166. doi: 10.3934/proc.2011.2011.1158

[8]

Kuo-Chang Chen. On Chenciner-Montgomery's orbit in the three-body problem. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 85-90. doi: 10.3934/dcds.2001.7.85

[9]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[10]

Regina Martínez, Carles Simó. On the stability of the Lagrangian homographic solutions in a curved three-body problem on $\mathbb{S}^2$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1157-1175. doi: 10.3934/dcds.2013.33.1157

[11]

Xiaojun Chang, Tiancheng Ouyang, Duokui Yan. Linear stability of the criss-cross orbit in the equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5971-5991. doi: 10.3934/dcds.2016062

[12]

Abimael Bengochea, Manuel Falconi, Ernesto Pérez-Chavela. Horseshoe periodic orbits with one symmetry in the general planar three-body problem. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 987-1008. doi: 10.3934/dcds.2013.33.987

[13]

Qinglong Zhou, Yongchao Zhang. Analytic results for the linear stability of the equilibrium point in Robe's restricted elliptic three-body problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1763-1787. doi: 10.3934/dcds.2017074

[14]

Samuel R. Kaplan, Mark Levi, Richard Montgomery. Making the moon reverse its orbit, or, stuttering in the planar three-body problem. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 569-595. doi: 10.3934/dcdsb.2008.10.569

[15]

Tiancheng Ouyang, Duokui Yan. Variational properties and linear stabilities of spatial isosceles orbits in the equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3989-4018. doi: 10.3934/dcds.2017169

[16]

Niraj Pathak, V. O. Thomas, Elbaz I. Abouelmagd. The perturbed photogravitational restricted three-body problem: Analysis of resonant periodic orbits. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 849-875. doi: 10.3934/dcdss.2019057

[17]

Hadia H. Selim, Juan L. G. Guirao, Elbaz I. Abouelmagd. Libration points in the restricted three-body problem: Euler angles, existence and stability. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 703-710. doi: 10.3934/dcdss.2019044

[18]

Ernest Fontich, Pau Martín. Arnold diffusion in perturbations of analytic integrable Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 61-84. doi: 10.3934/dcds.2001.7.61

[19]

Massimiliano Berti, Philippe Bolle. Fast Arnold diffusion in systems with three time scales. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 795-811. doi: 10.3934/dcds.2002.8.795

[20]

Jean-Baptiste Caillau, Bilel Daoud, Joseph Gergaud. Discrete and differential homotopy in circular restricted three-body control. Conference Publications, 2011, 2011 (Special) : 229-239. doi: 10.3934/proc.2011.2011.229

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]