• Previous Article
    Variational approach to second species periodic solutions of Poincaré of the 3 body problem
  • DCDS Home
  • This Issue
  • Next Article
    On the existence of bi--pyramidal central configurations of the $n+2$--body problem with an $n$--gon base
March  2013, 33(3): 1033-1047. doi: 10.3934/dcds.2013.33.1033

The angular momentum of a relative equilibrium

1. 

ASD, IMCCE (UMR 8028), Observatoire de Paris, 77 avenue Denfert-Rochereau, 75014 Paris

Received  April 2011 Revised  February 2012 Published  October 2012

There are two main reasons why relative equilibria of $N$ point masses under the influence of Newton attraction are mathematically more interesting to study when space dimension is at least 4:
    1) in a higher dimensional space, a relative equilibrium is determined not only by the initial configuration but also by the choice of a hermitian structure on the space where the motion takes place (see [3]); in particu\-lar, its angular momentum depends on this choice;
    2) relative equilibria are not necessarily periodic: if the configuration is balanced but not central (see [3,2,7]), the motion is in general quasi-periodic.
    In this exploratory paper we address the following question, which touches both aspects: what are the possible frequencies of the angular momentum of a given central (or balanced) configuration and at what values of these frequencies bifurcations from periodic to quasi-periodic relative equilibria do occur? We give a full answer for relative equilibrium motions in $R^4$ and conjecture that an analogous situation holds true for higher dimensions. A refinement of Horn's problem given in [12] plays an important role.
Citation: Alain Chenciner. The angular momentum of a relative equilibrium. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1033-1047. doi: 10.3934/dcds.2013.33.1033
References:
[1]

A. Albouy, Integral manifolds of the $N$-body problem,, Inventiones Mathematicæ, 114 (1993), 463. doi: 10.1007/BF01232677. Google Scholar

[2]

A. Albouy, "Mutual Distances in Celestial Mechanics,", Lectures at Nankai Institute, (2004). Google Scholar

[3]

A. Albouy and A. Chenciner, Le problème des $n$ corps et les distances mutuelles,, Inventiones Mathematicæ, 131 (1998), 151. doi: 10.1007/s002220050200. Google Scholar

[4]

V. I. Arnold, "Mathematical methods of classical Mechanics,", Graduate Texts in Mathematics, (1989). Google Scholar

[5]

R. Bhatia, Linear algebra to quantum cohomology: The story of alfred Horn's inequalitites,, The American Mathematical Monthly, 108 (2001), 289. doi: 10.2307/2695237. Google Scholar

[6]

P. Birtea, I. Casu, T. Ratiu and M. Turhan, Stability of equilibria for the so$(4)$ free rigid body,, preprint, (). Google Scholar

[7]

A. Chenciner, The Lagrange reduction of the $N$-body problem: a survey,, preprint, (). Google Scholar

[8]

A. Chenciner, Symmetric 4-body balanced configurations and their relative equilibrium motions,, in preparation., (). Google Scholar

[9]

A. Chenciner and H. Jiménez-Pérez, Angular momentum and Horn's problem,, preprint, (). Google Scholar

[10]

W. Fulton, Eigenvalues of sums of hermitian matrices,, Séminaire Bourbaki, 1997/98 (1998). Google Scholar

[11]

W. Fulton, Eigenvalues, invariant factors, highest weights, and Schubert calculus,, Bull. Amer. Math. Soc. (N. S.), 37 (2000), 209. Google Scholar

[12]

S. Fomin, W. Fulton, C. K. Li and Y. T. Poon, Eigenvalues, singular values, and Little wood-Richardson coefficients,, Amer. J. Math., 127 (2005), 101. doi: 10.1353/ajm.2005.0005. Google Scholar

[13]

A. Knutson, The symplectic and algebraic geometry of Horn's problem,, Linear Algebra and its Applications, 319 (2000), 61. Google Scholar

[14]

A. Knutson and T. Tao, Honeycombs and sums of Hermitian matrices,, Notices of the AMS, 48 (2001). Google Scholar

[15]

H. B. Lawson Junior and M. L. Michelson, "Spin Geometry,", Princeton University Press (1989)., (1989). Google Scholar

show all references

References:
[1]

A. Albouy, Integral manifolds of the $N$-body problem,, Inventiones Mathematicæ, 114 (1993), 463. doi: 10.1007/BF01232677. Google Scholar

[2]

A. Albouy, "Mutual Distances in Celestial Mechanics,", Lectures at Nankai Institute, (2004). Google Scholar

[3]

A. Albouy and A. Chenciner, Le problème des $n$ corps et les distances mutuelles,, Inventiones Mathematicæ, 131 (1998), 151. doi: 10.1007/s002220050200. Google Scholar

[4]

V. I. Arnold, "Mathematical methods of classical Mechanics,", Graduate Texts in Mathematics, (1989). Google Scholar

[5]

R. Bhatia, Linear algebra to quantum cohomology: The story of alfred Horn's inequalitites,, The American Mathematical Monthly, 108 (2001), 289. doi: 10.2307/2695237. Google Scholar

[6]

P. Birtea, I. Casu, T. Ratiu and M. Turhan, Stability of equilibria for the so$(4)$ free rigid body,, preprint, (). Google Scholar

[7]

A. Chenciner, The Lagrange reduction of the $N$-body problem: a survey,, preprint, (). Google Scholar

[8]

A. Chenciner, Symmetric 4-body balanced configurations and their relative equilibrium motions,, in preparation., (). Google Scholar

[9]

A. Chenciner and H. Jiménez-Pérez, Angular momentum and Horn's problem,, preprint, (). Google Scholar

[10]

W. Fulton, Eigenvalues of sums of hermitian matrices,, Séminaire Bourbaki, 1997/98 (1998). Google Scholar

[11]

W. Fulton, Eigenvalues, invariant factors, highest weights, and Schubert calculus,, Bull. Amer. Math. Soc. (N. S.), 37 (2000), 209. Google Scholar

[12]

S. Fomin, W. Fulton, C. K. Li and Y. T. Poon, Eigenvalues, singular values, and Little wood-Richardson coefficients,, Amer. J. Math., 127 (2005), 101. doi: 10.1353/ajm.2005.0005. Google Scholar

[13]

A. Knutson, The symplectic and algebraic geometry of Horn's problem,, Linear Algebra and its Applications, 319 (2000), 61. Google Scholar

[14]

A. Knutson and T. Tao, Honeycombs and sums of Hermitian matrices,, Notices of the AMS, 48 (2001). Google Scholar

[15]

H. B. Lawson Junior and M. L. Michelson, "Spin Geometry,", Princeton University Press (1989)., (1989). Google Scholar

[1]

Chjan C. Lim, Joseph Nebus, Syed M. Assad. Monte-Carlo and polyhedron-based simulations I: extremal states of the logarithmic N-body problem on a sphere. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 313-342. doi: 10.3934/dcdsb.2003.3.313

[2]

Gabriella Pinzari. Global Kolmogorov tori in the planetary $\boldsymbol N$-body problem. Announcement of result. Electronic Research Announcements, 2015, 22: 55-75. doi: 10.3934/era.2015.22.55

[3]

Nai-Chia Chen. Symmetric periodic orbits in three sub-problems of the $N$-body problem. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1523-1548. doi: 10.3934/dcdsb.2014.19.1523

[4]

Eduardo S. G. Leandro. On the Dziobek configurations of the restricted $(N+1)$-body problem with equal masses. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 589-595. doi: 10.3934/dcdss.2008.1.589

[5]

Marshall Hampton, Anders Nedergaard Jensen. Finiteness of relative equilibria in the planar generalized $N$-body problem with fixed subconfigurations. Journal of Geometric Mechanics, 2015, 7 (1) : 35-42. doi: 10.3934/jgm.2015.7.35

[6]

Vasile Mioc, Ernesto Pérez-Chavela. The 2-body problem under Fock's potential. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 611-629. doi: 10.3934/dcdss.2008.1.611

[7]

Richard Moeckel. A proof of Saari's conjecture for the three-body problem in $\R^d$. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 631-646. doi: 10.3934/dcdss.2008.1.631

[8]

Kuo-Chang Chen. On Chenciner-Montgomery's orbit in the three-body problem. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 85-90. doi: 10.3934/dcds.2001.7.85

[9]

Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557

[10]

Montserrat Corbera, Jaume Llibre. On the existence of bi--pyramidal central configurations of the $n+2$--body problem with an $n$--gon base. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1049-1060. doi: 10.3934/dcds.2013.33.1049

[11]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems & Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117

[12]

Albert Clop, Daniel Faraco, Alberto Ruiz. Stability of Calderón's inverse conductivity problem in the plane for discontinuous conductivities. Inverse Problems & Imaging, 2010, 4 (1) : 49-91. doi: 10.3934/ipi.2010.4.49

[13]

Matteo Santacesaria. Note on Calderón's inverse problem for measurable conductivities. Inverse Problems & Imaging, 2019, 13 (1) : 149-157. doi: 10.3934/ipi.2019008

[14]

Mark Lewis, Daniel Offin, Pietro-Luciano Buono, Mitchell Kovacic. Instability of the periodic hip-hop orbit in the $2N$-body problem with equal masses. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1137-1155. doi: 10.3934/dcds.2013.33.1137

[15]

Regina Martínez, Carles Simó. On the stability of the Lagrangian homographic solutions in a curved three-body problem on $\mathbb{S}^2$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1157-1175. doi: 10.3934/dcds.2013.33.1157

[16]

Qinglong Zhou, Yongchao Zhang. Analytic results for the linear stability of the equilibrium point in Robe's restricted elliptic three-body problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1763-1787. doi: 10.3934/dcds.2017074

[17]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[18]

Davide L. Ferrario, Alessandro Portaluri. Dynamics of the the dihedral four-body problem. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 925-974. doi: 10.3934/dcdss.2013.6.925

[19]

Edward Belbruno. Random walk in the three-body problem and applications. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 519-540. doi: 10.3934/dcdss.2008.1.519

[20]

Ernesto A. Lacomba, Mario Medina. Oscillatory motions in the rectangular four body problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 557-587. doi: 10.3934/dcdss.2008.1.557

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]