January  2013, 33(1): 1-6. doi: 10.3934/dcds.2013.33.1

On a property of a generalized Kolmogorov population model

1. 

Department of Mathematics, University of Texas at San Antonio, San Antonio, Texas 78249, United States

2. 

Department of Mathematics, University of Miami, Coral Gables, Miami, Florida 33124, United States

Received  August 2011 Revised  January 2012 Published  September 2012

We consider Kolmogorov-type systems which are not necessarily competitive or cooperative. Our main result shows that such systems cannot have nontrivial periodic solutions whose orbits are orbitally stable. We obtain our results under two assumptions that we consider to be natural assumptions.
Citation: Shair Ahmad, Alan C. Lazer. On a property of a generalized Kolmogorov population model. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 1-6. doi: 10.3934/dcds.2013.33.1
References:
[1]

S. Ahmad and A. C. Lazer, Average growth and total permanence in a competitive Lotka-Volterra system,, Ann. Mat. Pura Appl., 185 (2006). doi: 10.1007/s10231-004-0136-2. Google Scholar

[2]

C. Cosner and R. S. Cantrell, "Spatial Ecology via Reaction-Diffusion Equations,", John Wiley, (2003). Google Scholar

[3]

K. P. Hadeler and D. Glas, Quasimonotone systems and convergence to equilibrium in a population genetic model,, J. Math. Anal. Appl., 95 (1983), 297. doi: 10.1016/0022-247X(83)90108-7. Google Scholar

[4]

M. W. Hirsch, The dynamical systems approach to differential equations,, Bull. Amer. Math. Soc., 11 (1984), 1. doi: 10.1090/S0273-0979-1984-15236-4. Google Scholar

[5]

J. Jiang, Attractors for strictly monotone flows,, J. Math. Anal. Appl., 162 (1991), 210. doi: 10.1016/0022-247X(91)90188-6. Google Scholar

[6]

A. N. Kolmogorov, "Sulla Teoria Di Volterra Della Lotta Per L'esistenza,", Giorn. Instituto Ital. Attuari, (1936). Google Scholar

[7]

H. L. Smith, "Monotone Dynamical Systems: An introduction to the Theory of Competitive and Cooperative Systems,", Mathematical Surveys and Monographs, 41 (1995). Google Scholar

[8]

F. Zanolin, Permanence and positive periodic solutions for Kolmogorov competing species systems,, Results Math., 21 (1992), 224. Google Scholar

[9]

M. L. Zeeman, Hopf bifurcation in competitive three-dimensional Lotka-Volterra systems,, Dynam. Stability Syst., 8 (1993), 189. doi: 10.1080/02681119308806158. Google Scholar

show all references

References:
[1]

S. Ahmad and A. C. Lazer, Average growth and total permanence in a competitive Lotka-Volterra system,, Ann. Mat. Pura Appl., 185 (2006). doi: 10.1007/s10231-004-0136-2. Google Scholar

[2]

C. Cosner and R. S. Cantrell, "Spatial Ecology via Reaction-Diffusion Equations,", John Wiley, (2003). Google Scholar

[3]

K. P. Hadeler and D. Glas, Quasimonotone systems and convergence to equilibrium in a population genetic model,, J. Math. Anal. Appl., 95 (1983), 297. doi: 10.1016/0022-247X(83)90108-7. Google Scholar

[4]

M. W. Hirsch, The dynamical systems approach to differential equations,, Bull. Amer. Math. Soc., 11 (1984), 1. doi: 10.1090/S0273-0979-1984-15236-4. Google Scholar

[5]

J. Jiang, Attractors for strictly monotone flows,, J. Math. Anal. Appl., 162 (1991), 210. doi: 10.1016/0022-247X(91)90188-6. Google Scholar

[6]

A. N. Kolmogorov, "Sulla Teoria Di Volterra Della Lotta Per L'esistenza,", Giorn. Instituto Ital. Attuari, (1936). Google Scholar

[7]

H. L. Smith, "Monotone Dynamical Systems: An introduction to the Theory of Competitive and Cooperative Systems,", Mathematical Surveys and Monographs, 41 (1995). Google Scholar

[8]

F. Zanolin, Permanence and positive periodic solutions for Kolmogorov competing species systems,, Results Math., 21 (1992), 224. Google Scholar

[9]

M. L. Zeeman, Hopf bifurcation in competitive three-dimensional Lotka-Volterra systems,, Dynam. Stability Syst., 8 (1993), 189. doi: 10.1080/02681119308806158. Google Scholar

[1]

Yubin Liu, Peixuan Weng. Asymptotic spreading of a three dimensional Lotka-Volterra cooperative-competitive system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 505-518. doi: 10.3934/dcdsb.2015.20.505

[2]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. On a limiting system in the Lotka--Volterra competition with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 435-458. doi: 10.3934/dcds.2004.10.435

[3]

Guichen Lu, Zhengyi Lu. Permanence for two-species Lotka-Volterra cooperative systems with delays. Mathematical Biosciences & Engineering, 2008, 5 (3) : 477-484. doi: 10.3934/mbe.2008.5.477

[4]

Guo Lin, Wan-Tong Li, Shigui Ruan. Monostable wavefronts in cooperative Lotka-Volterra systems with nonlocal delays. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 1-23. doi: 10.3934/dcds.2011.31.1

[5]

Meng Liu, Ke Wang. Population dynamical behavior of Lotka-Volterra cooperative systems with random perturbations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2495-2522. doi: 10.3934/dcds.2013.33.2495

[6]

Hélène Leman, Sylvie Méléard, Sepideh Mirrahimi. Influence of a spatial structure on the long time behavior of a competitive Lotka-Volterra type system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 469-493. doi: 10.3934/dcdsb.2015.20.469

[7]

Xiaoling Zou, Ke Wang. Optimal harvesting for a stochastic N-dimensional competitive Lotka-Volterra model with jumps. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 683-701. doi: 10.3934/dcdsb.2015.20.683

[8]

Cheng-Hsiung Hsu, Ting-Hui Yang. Traveling plane wave solutions of delayed lattice differential systems in competitive Lotka-Volterra type. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 111-128. doi: 10.3934/dcdsb.2010.14.111

[9]

Xiaoyue Li, Xuerong Mao. Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 523-545. doi: 10.3934/dcds.2009.24.523

[10]

Francisco Montes de Oca, Liliana Pérez. Balancing survival and extinction in nonautonomous competitive Lotka-Volterra systems with infinite delays. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2663-2690. doi: 10.3934/dcdsb.2015.20.2663

[11]

Zhaohai Ma, Rong Yuan, Yang Wang, Xin Wu. Multidimensional stability of planar traveling waves for the delayed nonlocal dispersal competitive Lotka-Volterra system. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2069-2092. doi: 10.3934/cpaa.2019093

[12]

Yukio Kan-On. Bifurcation structures of positive stationary solutions for a Lotka-Volterra competition model with diffusion II: Global structure. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 135-148. doi: 10.3934/dcds.2006.14.135

[13]

Zhanyuan Hou, Stephen Baigent. Heteroclinic limit cycles in competitive Kolmogorov systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4071-4093. doi: 10.3934/dcds.2013.33.4071

[14]

Juan Luis García Guirao, Marek Lampart. Transitivity of a Lotka-Volterra map. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 75-82. doi: 10.3934/dcdsb.2008.9.75

[15]

G. Donald Allen. A dynamic model for competitive-cooperative species. Conference Publications, 1998, 1998 (Special) : 29-50. doi: 10.3934/proc.1998.1998.29

[16]

Łukasz Struski, Jacek Tabor, Tomasz Kułaga. Cone-fields without constant orbit core dimension. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3651-3664. doi: 10.3934/dcds.2012.32.3651

[17]

Xiao He, Sining Zheng. Protection zone in a modified Lotka-Volterra model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2027-2038. doi: 10.3934/dcdsb.2015.20.2027

[18]

Mats Gyllenberg, Yi Wang. Periodic tridiagonal systems modeling competitive-cooperative ecological interactions. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 289-298. doi: 10.3934/dcdsb.2005.5.289

[19]

Yi Wang, Dun Zhou. Transversality for time-periodic competitive-cooperative tridiagonal systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1821-1830. doi: 10.3934/dcdsb.2015.20.1821

[20]

Lin Niu, Yi Wang. Non-oscillation principle for eventually competitive and cooperative systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-14. doi: 10.3934/dcdsb.2019148

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]