February  2012, 32(2): 433-466. doi: 10.3934/dcds.2012.32.433

On the relations between positive Lyapunov exponents, positive entropy, and sensitivity for interval maps

1. 

Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain, Spain

Received  September 2010 Revised  July 2011 Published  September 2011

Let $f:I=[0,1]\rightarrow I$ be a Borel measurable map and let $\mu$ be a probability measure on the Borel subsets of $I$. We consider three standard ways to cope with the idea of ``observable chaos'' for $f$ with respect to the measure $\mu$: $h_\mu(f)>0$ ---when $\mu$ is invariant---, $\mu(L^+(f))>0$ ---when $\mu$ is absolutely continuous with respect to the Lebesgue measure---, and $\mu(S^\mu(f))>0$. Here $h_\mu(f)$, $L^+(f)$ and $S^\mu(f)$ denote, respectively, the metric entropy of $f$, the set of points with positive Lyapunov exponent, and the set of sensitive points to initial conditions with respect to $\mu$.
    It is well known that if $h_\mu(f)>0$ or $\mu(L^+(f))>0$, then $\mu(S^\mu(f))>0$, and that (when $\mu$ is invariant and absolutely continuous) $h_\mu(f)>0$ and $\mu(L^+(f))>0$ are equivalent properties. However, the available proofs in the literature require substantially stronger hypotheses than those strictly necessary. In this paper we revisit these notions and show that the above-mentioned results remain true in, essentially, the most general (reasonable) settings. In particular, we improve some previous results from [2], [6], and [23].
Citation: Alejo Barrio Blaya, Víctor Jiménez López. On the relations between positive Lyapunov exponents, positive entropy, and sensitivity for interval maps. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 433-466. doi: 10.3934/dcds.2012.32.433
References:
[1]

C. Abraham, G. Biau and B. Cadre, Chaotic properties of mappings on a probability space,, J. Math. Anal. Appl., 266 (2002), 420. doi: 10.1006/jmaa.2001.7754. Google Scholar

[2]

C. Abraham, G. Biau and B. Cadre, On Lyapunov exponent and sensitivity,, J. Math. Anal. Appl., 290 (2004), 395. doi: 10.1016/j.jmaa.2003.10.029. Google Scholar

[3]

R. B. Ash, "Real Analysis and Probability,'', Probability and Mathematical Statistics, (1972). Google Scholar

[4]

Y. Baba, I. Kubo and Y. Takahashi, Li-Yorke's scrambled sets have measure $0$,, Nonlinear Anal., 26 (1996), 1611. doi: 10.1016/0362-546X(95)00044-V. Google Scholar

[5]

A. Barrio Blaya and V. Jiménez López, Is trivial dynamics that trivial?,, Amer. Math. Monthly, 113 (2006), 109. doi: 10.2307/27641863. Google Scholar

[6]

A. M. Blokh, Sensitive mappings of an interval,, Uspekhi Mat. Nauk, 37 (1982), 189. doi: 10.1070/RM1982v037n02ABEH003915. Google Scholar

[7]

A. Blokh and M. Misiurewicz, Wild attractors of polymodal negative Schwarzian maps,, Comm. Math. Phys., 199 (1998), 397. doi: 10.1007/s002200050506. Google Scholar

[8]

A. Boyarsky and P. Góra, "Laws of Chaos. Invariant Measures and Dynamical Systems in One Dimension,'', Probability and its Applications, (1997). Google Scholar

[9]

H. Bruin, G. Keller and M. St. Pierre, Adding machines and wild attractors,, Ergodic Theory Dynam. Systems, 17 (1997), 1267. doi: 10.1017/S0143385797086392. Google Scholar

[10]

J. Buzzi, Thermodynamical formalism for piecewise invertible maps: Absolutely continuous invariant measures as equilibrium states,, in, 69 (2001), 749. Google Scholar

[11]

B. Cadre and P. Jacob, On pairwise sensitivity,, J. Math. Anal. Appl., 309 (2005), 375. doi: 10.1016/j.jmaa.2005.01.061. Google Scholar

[12]

B. D. Craven, "Lebesgue Measure & Integral,'', Pitman, (1982). Google Scholar

[13]

R. L. Devaney, "An Introduction to Chaotic Dynamical Systems,'', The Benjamin/Cummings Publishing Co., (1986). Google Scholar

[14]

E. I. Dinaburg, A correlation between topological entropy and metric entropy,, (Russian) Dokl. Akad. Nauk SSSR, 190 (1970), 19. Google Scholar

[15]

E. Glasner and B. Weiss, Sensitive dependence on initial conditions,, Nonlinearity, 6 (1993), 1067. doi: 10.1088/0951-7715/6/6/014. Google Scholar

[16]

J. Guckenheimer, Sensitive dependence to initial conditions for one-dimensional maps,, Comm. Math. Phys., 70 (1979), 133. doi: 10.1007/BF01982351. Google Scholar

[17]

F. Hofbauer, An inequality for the Ljapunov exponent of an ergodic invariant measure for a piecewise monotonic map of the interval,, in, 1486 (1991), 227. Google Scholar

[18]

S. D. Johnson, Singular measures without restrictive intervals,, Comm. Math. Phys., 110 (1987), 185. doi: 10.1007/BF01207362. Google Scholar

[19]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms,, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137. doi: 10.1007/BF02684777. Google Scholar

[20]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,'', With a supplementary chapter by Katok and Leonardo Mendoza, 54 (1995). Google Scholar

[21]

G. Keller, Exponents, attractors and Hopf decompositions for interval maps,, Ergodic Theory Dynam. Systems, 10 (1990), 717. doi: 10.1017/S0143385700005861. Google Scholar

[22]

A. N. Kolmogorov, A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces (Russian),, Dokl. Akad. Nauk SSSR (N.S.), 119 (1958), 861. Google Scholar

[23]

F. Ledrappier, Some properties of absolutely continuous invariant measures on an interval,, Ergodic Theory Dynam. Systems, 1 (1981), 77. doi: 10.1017/S0143385700001176. Google Scholar

[24]

E. N. Lorenz, The predictability of hydrodynamic flow,, Trans. New York Acad. Sci., 25 (1963), 409. Google Scholar

[25]

M. Lyubich, Ergodic theory for smooth one-dimensional dynamical systems,, Stony Brook preprint, (1991). Google Scholar

[26]

R. Mañé, Hyperbolicity, sinks and measure in one-dimensional dynamics,, Comm. Math. Phys., 100 (1985), 495. Google Scholar

[27]

R. Mañé, "Ergodic Theory and Differentiable Dynamics,'', Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 8 (1987). Google Scholar

[28]

W. de Melo and S. van Strien, "One-Dimensional Dynamics,'', Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 25 (1993). Google Scholar

[29]

M. Misiurewicz, Horseshoes for mappings of the interval,, Bull. Acad. Polon. Sci. Sér. Sci. Math., 27 (1979), 167. Google Scholar

[30]

W. Parry, "Entropy and Generators in Ergodic Theory,'', W. A. Benjamin, (1969). Google Scholar

[31]

V. A. Rohlin, Exact endomorphisms of a Lebesgue space,, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 499. Google Scholar

[32]

D. Ruelle, An inequality for the entropy of differentiable maps,, Bol. Soc. Brasil. Mat., 9 (1978), 83. Google Scholar

[33]

S. Ruette, Chaos for continuous interval maps. A survey of relationship between the various sorts of chaos,, preprint, (2003). Google Scholar

[34]

S. van Strien and E. Vargas, Real bounds, ergodicity and negative Schwarzian for multimodal maps,, J. Amer. Math. Soc., 17 (2004), 749. doi: 10.1090/S0894-0347-04-00463-1. Google Scholar

[35]

P. Walters, "An Introduction to Ergodic Theory,'', Graduate Texts in Mathematics, 79 (1982). Google Scholar

[36]

H. Whitney, On totally differentiable and smooth functions,, Pacific J. Math., 1 (1951), 143. Google Scholar

show all references

References:
[1]

C. Abraham, G. Biau and B. Cadre, Chaotic properties of mappings on a probability space,, J. Math. Anal. Appl., 266 (2002), 420. doi: 10.1006/jmaa.2001.7754. Google Scholar

[2]

C. Abraham, G. Biau and B. Cadre, On Lyapunov exponent and sensitivity,, J. Math. Anal. Appl., 290 (2004), 395. doi: 10.1016/j.jmaa.2003.10.029. Google Scholar

[3]

R. B. Ash, "Real Analysis and Probability,'', Probability and Mathematical Statistics, (1972). Google Scholar

[4]

Y. Baba, I. Kubo and Y. Takahashi, Li-Yorke's scrambled sets have measure $0$,, Nonlinear Anal., 26 (1996), 1611. doi: 10.1016/0362-546X(95)00044-V. Google Scholar

[5]

A. Barrio Blaya and V. Jiménez López, Is trivial dynamics that trivial?,, Amer. Math. Monthly, 113 (2006), 109. doi: 10.2307/27641863. Google Scholar

[6]

A. M. Blokh, Sensitive mappings of an interval,, Uspekhi Mat. Nauk, 37 (1982), 189. doi: 10.1070/RM1982v037n02ABEH003915. Google Scholar

[7]

A. Blokh and M. Misiurewicz, Wild attractors of polymodal negative Schwarzian maps,, Comm. Math. Phys., 199 (1998), 397. doi: 10.1007/s002200050506. Google Scholar

[8]

A. Boyarsky and P. Góra, "Laws of Chaos. Invariant Measures and Dynamical Systems in One Dimension,'', Probability and its Applications, (1997). Google Scholar

[9]

H. Bruin, G. Keller and M. St. Pierre, Adding machines and wild attractors,, Ergodic Theory Dynam. Systems, 17 (1997), 1267. doi: 10.1017/S0143385797086392. Google Scholar

[10]

J. Buzzi, Thermodynamical formalism for piecewise invertible maps: Absolutely continuous invariant measures as equilibrium states,, in, 69 (2001), 749. Google Scholar

[11]

B. Cadre and P. Jacob, On pairwise sensitivity,, J. Math. Anal. Appl., 309 (2005), 375. doi: 10.1016/j.jmaa.2005.01.061. Google Scholar

[12]

B. D. Craven, "Lebesgue Measure & Integral,'', Pitman, (1982). Google Scholar

[13]

R. L. Devaney, "An Introduction to Chaotic Dynamical Systems,'', The Benjamin/Cummings Publishing Co., (1986). Google Scholar

[14]

E. I. Dinaburg, A correlation between topological entropy and metric entropy,, (Russian) Dokl. Akad. Nauk SSSR, 190 (1970), 19. Google Scholar

[15]

E. Glasner and B. Weiss, Sensitive dependence on initial conditions,, Nonlinearity, 6 (1993), 1067. doi: 10.1088/0951-7715/6/6/014. Google Scholar

[16]

J. Guckenheimer, Sensitive dependence to initial conditions for one-dimensional maps,, Comm. Math. Phys., 70 (1979), 133. doi: 10.1007/BF01982351. Google Scholar

[17]

F. Hofbauer, An inequality for the Ljapunov exponent of an ergodic invariant measure for a piecewise monotonic map of the interval,, in, 1486 (1991), 227. Google Scholar

[18]

S. D. Johnson, Singular measures without restrictive intervals,, Comm. Math. Phys., 110 (1987), 185. doi: 10.1007/BF01207362. Google Scholar

[19]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms,, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137. doi: 10.1007/BF02684777. Google Scholar

[20]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,'', With a supplementary chapter by Katok and Leonardo Mendoza, 54 (1995). Google Scholar

[21]

G. Keller, Exponents, attractors and Hopf decompositions for interval maps,, Ergodic Theory Dynam. Systems, 10 (1990), 717. doi: 10.1017/S0143385700005861. Google Scholar

[22]

A. N. Kolmogorov, A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces (Russian),, Dokl. Akad. Nauk SSSR (N.S.), 119 (1958), 861. Google Scholar

[23]

F. Ledrappier, Some properties of absolutely continuous invariant measures on an interval,, Ergodic Theory Dynam. Systems, 1 (1981), 77. doi: 10.1017/S0143385700001176. Google Scholar

[24]

E. N. Lorenz, The predictability of hydrodynamic flow,, Trans. New York Acad. Sci., 25 (1963), 409. Google Scholar

[25]

M. Lyubich, Ergodic theory for smooth one-dimensional dynamical systems,, Stony Brook preprint, (1991). Google Scholar

[26]

R. Mañé, Hyperbolicity, sinks and measure in one-dimensional dynamics,, Comm. Math. Phys., 100 (1985), 495. Google Scholar

[27]

R. Mañé, "Ergodic Theory and Differentiable Dynamics,'', Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 8 (1987). Google Scholar

[28]

W. de Melo and S. van Strien, "One-Dimensional Dynamics,'', Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 25 (1993). Google Scholar

[29]

M. Misiurewicz, Horseshoes for mappings of the interval,, Bull. Acad. Polon. Sci. Sér. Sci. Math., 27 (1979), 167. Google Scholar

[30]

W. Parry, "Entropy and Generators in Ergodic Theory,'', W. A. Benjamin, (1969). Google Scholar

[31]

V. A. Rohlin, Exact endomorphisms of a Lebesgue space,, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 499. Google Scholar

[32]

D. Ruelle, An inequality for the entropy of differentiable maps,, Bol. Soc. Brasil. Mat., 9 (1978), 83. Google Scholar

[33]

S. Ruette, Chaos for continuous interval maps. A survey of relationship between the various sorts of chaos,, preprint, (2003). Google Scholar

[34]

S. van Strien and E. Vargas, Real bounds, ergodicity and negative Schwarzian for multimodal maps,, J. Amer. Math. Soc., 17 (2004), 749. doi: 10.1090/S0894-0347-04-00463-1. Google Scholar

[35]

P. Walters, "An Introduction to Ergodic Theory,'', Graduate Texts in Mathematics, 79 (1982). Google Scholar

[36]

H. Whitney, On totally differentiable and smooth functions,, Pacific J. Math., 1 (1951), 143. Google Scholar

[1]

Jawad Al-Khal, Henk Bruin, Michael Jakobson. New examples of S-unimodal maps with a sigma-finite absolutely continuous invariant measure. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 35-61. doi: 10.3934/dcds.2008.22.35

[2]

Simon Lloyd, Edson Vargas. Critical covering maps without absolutely continuous invariant probability measure. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2393-2412. doi: 10.3934/dcds.2019101

[3]

Zhiming Li, Lin Shu. The metric entropy of random dynamical systems in a Hilbert space: Characterization of invariant measures satisfying Pesin's entropy formula. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4123-4155. doi: 10.3934/dcds.2013.33.4123

[4]

Jonathan C. Mattingly, Etienne Pardoux. Invariant measure selection by noise. An example. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4223-4257. doi: 10.3934/dcds.2014.34.4223

[5]

Luis Barreira and Jorg Schmeling. Invariant sets with zero measure and full Hausdorff dimension. Electronic Research Announcements, 1997, 3: 114-118.

[6]

Lucas Backes, Aaron Brown, Clark Butler. Continuity of Lyapunov exponents for cocycles with invariant holonomies. Journal of Modern Dynamics, 2018, 12: 223-260. doi: 10.3934/jmd.2018009

[7]

Huyi Hu, Miaohua Jiang, Yunping Jiang. Infimum of the metric entropy of hyperbolic attractors with respect to the SRB measure. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 215-234. doi: 10.3934/dcds.2008.22.215

[8]

Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085

[9]

Paola Mannucci, Claudio Marchi, Nicoletta Tchou. Asymptotic behaviour for operators of Grushin type: Invariant measure and singular perturbations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 119-128. doi: 10.3934/dcdss.2019008

[10]

Boris Kalinin, Anatole Katok. Measure rigidity beyond uniform hyperbolicity: invariant measures for cartan actions on tori. Journal of Modern Dynamics, 2007, 1 (1) : 123-146. doi: 10.3934/jmd.2007.1.123

[11]

Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3121-3135. doi: 10.3934/cpaa.2019140

[12]

Pengfei Zhang. Partially hyperbolic sets with positive measure and $ACIP$ for partially hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1435-1447. doi: 10.3934/dcds.2012.32.1435

[13]

Jiu Ding, Aihui Zhou. Absolutely continuous invariant measures for piecewise $C^2$ and expanding mappings in higher dimensions. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 451-458. doi: 10.3934/dcds.2000.6.451

[14]

Jane Hawkins, Michael Taylor. The maximal entropy measure of Fatou boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4421-4431. doi: 10.3934/dcds.2018192

[15]

Boris Kalinin, Anatole Katok, Federico Rodriguez Hertz. Errata to "Measure rigidity beyond uniform hyperbolicity: Invariant measures for Cartan actions on tori" and "Uniqueness of large invariant measures for $\Zk$ actions with Cartan homotopy data". Journal of Modern Dynamics, 2010, 4 (1) : 207-209. doi: 10.3934/jmd.2010.4.207

[16]

Ugo Bessi. The stochastic value function in metric measure spaces. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1819-1839. doi: 10.3934/dcds.2017076

[17]

Min Qian, Jian-Sheng Xie. Entropy formula for endomorphisms: Relations between entropy, exponents and dimension. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 367-392. doi: 10.3934/dcds.2008.21.367

[18]

Erik M. Bollt, Joseph D. Skufca, Stephen J . McGregor. Control entropy: A complexity measure for nonstationary signals. Mathematical Biosciences & Engineering, 2009, 6 (1) : 1-25. doi: 10.3934/mbe.2009.6.1

[19]

Tao Wang, Yu Huang. Weighted topological and measure-theoretic entropy. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3941-3967. doi: 10.3934/dcds.2019159

[20]

Luis Barreira, César Silva. Lyapunov exponents for continuous transformations and dimension theory. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 469-490. doi: 10.3934/dcds.2005.13.469

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]