• Previous Article
    Stability and convergence at infinite time of several fully discrete schemes for a Ginzburg-Landau model for nematic liquid crystal flows
  • DCDS Home
  • This Issue
  • Next Article
    Decay of solutions for a system of nonlinear Schrödinger equations in 2D
December  2012, 32(12): 4247-4263. doi: 10.3934/dcds.2012.32.4247

Semilinear elliptic systems involving multiple critical exponents and singularities in $\mathbb{R}^N$

1. 

School of Mathematics and Statistics, South-Central University for Nationalities, Wuhan 430074, China, China

Received  July 2011 Revised  December 2011 Published  August 2012

In this paper, a system of elliptic equations is investigated, which involves multiple critical Sobolev exponents and singular points. By variational methods and analytic techniques, the best constant corresponding to the system is investigated, and the existence and nonexistence of ground state solutions to the system are established.
Citation: Dongsheng Kang, Fen Yang. Semilinear elliptic systems involving multiple critical exponents and singularities in $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4247-4263. doi: 10.3934/dcds.2012.32.4247
References:
[1]

B. Abdellaoui, V. Felli and I. Peral, Existence and nonexistence for quasilinear equations involving thep-laplacian,, Boll. Unione Mat. Ital. Sez., 8 (2006), 445. Google Scholar

[2]

B. Abdellaoui, V. Felli and I. Peral, Some remarks on systems of elliptic equations doubly critical in the whole $\R^N$,, Calc. Var. Partial Differential Equations, 34 (2009), 97. doi: 10.1007/s00526-008-0177-2. Google Scholar

[3]

M. Bouchekif and Y. Nasri, On a singular elliptic system at resonance,, Ann. Mat. Pura Appl., 189 (2010), 227. doi: 10.1007/s10231-009-0106-9. Google Scholar

[4]

D. Cao and P. Han, Solutions to critical elliptic equations with multi-singular inverse square potentials,, J. Differential Equations, 224 (2006), 332. doi: 10.1016/j.jde.2005.07.010. Google Scholar

[5]

V. Felli and S. Terracini, Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity,, Comm. Partial Differential Equations, 31 (2006), 469. doi: 10.1080/03605300500394439. Google Scholar

[6]

D. Figueiredo, I. Peral and J. Rossi, The critical hyperbola for a Hamiltonian elliptic system with weights,, Ann. Mat. Pura Appl., 187 (2008), 531. doi: 10.1007/s10231-007-0054-1. Google Scholar

[7]

N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents,, Trans. Amer. Math. Soc., 352 (2000), 5703. doi: 10.1090/S0002-9947-00-02560-5. Google Scholar

[8]

P. Han, Quasilinear elliptic problems with critical exponents and Hardy terms,, Nonlinear Anal., 61 (2005), 735. doi: 10.1016/j.na.2005.01.030. Google Scholar

[9]

G. Hardy, J. Littlewood and G. Polya, "Inequalities,", 2nd, (1988). Google Scholar

[10]

Y. Huang and D. Kang, Elliptic systems involving the critical exponents and potentials,, Nonlinear Anal., 71 (2009), 3638. doi: 10.1016/j.na.2009.02.024. Google Scholar

[11]

Y. Huang and D. Kang, On the singular elliptic systems involving multiple critical Sobolev exponents,, Nonlinear Anal., 74 (2011), 400. doi: 10.1016/j.na.2010.08.051. Google Scholar

[12]

E. Jannelli, The role played by space dimension in elliptic critical problems,, J. Differential Equations, 156 (1999), 407. doi: 10.1006/jdeq.1998.3589. Google Scholar

[13]

P. L. Lions, The concentration compactness principle in the calculus of variations, the limit case (I),, Rev. Mat. Iberoamericana, (1985), 145. Google Scholar

[14]

P. L. Lions, The concentration compactness principle in the calculus of variations, the limit case (II),, Rev. Mat. Iberoamericana, 1 (1985), 45. Google Scholar

[15]

Z. Liu and P. Han, Existence of solutions for singular elliptic systems with critical exponents,, Nonlinear Anal., 69 (2008), 2968. doi: 10.1016/j.na.2007.08.073. Google Scholar

[16]

S. Terracini, On positive solutions to a class of equations with a singular coefficient and critical exponent,, Adv. Differential Equations, 2 (1996), 241. Google Scholar

[17]

J. L. Vazquez, A strong maximum principle for some quasilinear elliptic equations,, Appl. Math. Optimization, 12 (1984), 191. doi: 10.1007/BF01449041. Google Scholar

[18]

M. Willem, "Analyse Fonctionnelle Élémentaire,", Cassini Éditeurs, (2003). Google Scholar

show all references

References:
[1]

B. Abdellaoui, V. Felli and I. Peral, Existence and nonexistence for quasilinear equations involving thep-laplacian,, Boll. Unione Mat. Ital. Sez., 8 (2006), 445. Google Scholar

[2]

B. Abdellaoui, V. Felli and I. Peral, Some remarks on systems of elliptic equations doubly critical in the whole $\R^N$,, Calc. Var. Partial Differential Equations, 34 (2009), 97. doi: 10.1007/s00526-008-0177-2. Google Scholar

[3]

M. Bouchekif and Y. Nasri, On a singular elliptic system at resonance,, Ann. Mat. Pura Appl., 189 (2010), 227. doi: 10.1007/s10231-009-0106-9. Google Scholar

[4]

D. Cao and P. Han, Solutions to critical elliptic equations with multi-singular inverse square potentials,, J. Differential Equations, 224 (2006), 332. doi: 10.1016/j.jde.2005.07.010. Google Scholar

[5]

V. Felli and S. Terracini, Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity,, Comm. Partial Differential Equations, 31 (2006), 469. doi: 10.1080/03605300500394439. Google Scholar

[6]

D. Figueiredo, I. Peral and J. Rossi, The critical hyperbola for a Hamiltonian elliptic system with weights,, Ann. Mat. Pura Appl., 187 (2008), 531. doi: 10.1007/s10231-007-0054-1. Google Scholar

[7]

N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents,, Trans. Amer. Math. Soc., 352 (2000), 5703. doi: 10.1090/S0002-9947-00-02560-5. Google Scholar

[8]

P. Han, Quasilinear elliptic problems with critical exponents and Hardy terms,, Nonlinear Anal., 61 (2005), 735. doi: 10.1016/j.na.2005.01.030. Google Scholar

[9]

G. Hardy, J. Littlewood and G. Polya, "Inequalities,", 2nd, (1988). Google Scholar

[10]

Y. Huang and D. Kang, Elliptic systems involving the critical exponents and potentials,, Nonlinear Anal., 71 (2009), 3638. doi: 10.1016/j.na.2009.02.024. Google Scholar

[11]

Y. Huang and D. Kang, On the singular elliptic systems involving multiple critical Sobolev exponents,, Nonlinear Anal., 74 (2011), 400. doi: 10.1016/j.na.2010.08.051. Google Scholar

[12]

E. Jannelli, The role played by space dimension in elliptic critical problems,, J. Differential Equations, 156 (1999), 407. doi: 10.1006/jdeq.1998.3589. Google Scholar

[13]

P. L. Lions, The concentration compactness principle in the calculus of variations, the limit case (I),, Rev. Mat. Iberoamericana, (1985), 145. Google Scholar

[14]

P. L. Lions, The concentration compactness principle in the calculus of variations, the limit case (II),, Rev. Mat. Iberoamericana, 1 (1985), 45. Google Scholar

[15]

Z. Liu and P. Han, Existence of solutions for singular elliptic systems with critical exponents,, Nonlinear Anal., 69 (2008), 2968. doi: 10.1016/j.na.2007.08.073. Google Scholar

[16]

S. Terracini, On positive solutions to a class of equations with a singular coefficient and critical exponent,, Adv. Differential Equations, 2 (1996), 241. Google Scholar

[17]

J. L. Vazquez, A strong maximum principle for some quasilinear elliptic equations,, Appl. Math. Optimization, 12 (1984), 191. doi: 10.1007/BF01449041. Google Scholar

[18]

M. Willem, "Analyse Fonctionnelle Élémentaire,", Cassini Éditeurs, (2003). Google Scholar

[1]

Yinbin Deng, Wentao Huang. Positive ground state solutions for a quasilinear elliptic equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4213-4230. doi: 10.3934/dcds.2017179

[2]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[3]

Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure & Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527

[4]

Yong-Yong Li, Yan-Fang Xue, Chun-Lei Tang. Ground state solutions for asymptotically periodic modified Schr$ \ddot{\mbox{o}} $dinger-Poisson system involving critical exponent. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2299-2324. doi: 10.3934/cpaa.2019104

[5]

Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure & Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015

[6]

Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025

[7]

Jing Zhang, Shiwang Ma. Positive solutions of perturbed elliptic problems involving Hardy potential and critical Sobolev exponent. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1999-2009. doi: 10.3934/dcdsb.2016033

[8]

Jian Zhang, Wen Zhang, Xianhua Tang. Ground state solutions for Hamiltonian elliptic system with inverse square potential. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4565-4583. doi: 10.3934/dcds.2017195

[9]

Jian Zhang, Wen Zhang. Existence and decay property of ground state solutions for Hamiltonian elliptic system. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2433-2455. doi: 10.3934/cpaa.2019110

[10]

Yanfang Peng. On elliptic systems with Sobolev critical exponent. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3357-3373. doi: 10.3934/dcds.2016.36.3357

[11]

Gui-Dong Li, Chun-Lei Tang. Existence of positive ground state solutions for Choquard equation with variable exponent growth. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2035-2050. doi: 10.3934/dcdss.2019131

[12]

Guangze Gu, Xianhua Tang, Youpei Zhang. Ground states for asymptotically periodic fractional Kirchhoff equation with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3181-3200. doi: 10.3934/cpaa.2019143

[13]

Marco A. S. Souto, Sérgio H. M. Soares. Ground state solutions for quasilinear stationary Schrödinger equations with critical growth. Communications on Pure & Applied Analysis, 2013, 12 (1) : 99-116. doi: 10.3934/cpaa.2013.12.99

[14]

Claudianor Oliveira Alves, M. A.S. Souto. On existence and concentration behavior of ground state solutions for a class of problems with critical growth. Communications on Pure & Applied Analysis, 2002, 1 (3) : 417-431. doi: 10.3934/cpaa.2002.1.417

[15]

Yongpeng Chen, Yuxia Guo, Zhongwei Tang. Concentration of ground state solutions for quasilinear Schrödinger systems with critical exponents. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2693-2715. doi: 10.3934/cpaa.2019120

[16]

Lucas C. F. Ferreira, Everaldo Medeiros, Marcelo Montenegro. An elliptic system and the critical hyperbola. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1169-1182. doi: 10.3934/cpaa.2015.14.1169

[17]

Qilin Xie, Jianshe Yu. Bounded state solutions of Kirchhoff type problems with a critical exponent in high dimension. Communications on Pure & Applied Analysis, 2019, 18 (1) : 129-158. doi: 10.3934/cpaa.2019008

[18]

Hua Jin, Wenbin Liu, Huixing Zhang, Jianjun Zhang. Ground States of Nonlinear Fractional Choquard Equations with Hardy-Littlewood-Sobolev Critical Growth. Communications on Pure & Applied Analysis, 2020, 19 (1) : 123-144. doi: 10.3934/cpaa.2020008

[19]

Jinhui Chen, Haitao Yang. A result on Hardy-Sobolev critical elliptic equations with boundary singularities. Communications on Pure & Applied Analysis, 2007, 6 (1) : 191-201. doi: 10.3934/cpaa.2007.6.191

[20]

Yinbin Deng, Shuangjie Peng, Li Wang. Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 795-826. doi: 10.3934/dcds.2012.32.795

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]