December  2012, 32(12): 4069-4110. doi: 10.3934/dcds.2012.32.4069

Dafermos regularization of a diffusive-dispersive equation with cubic flux

1. 

Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205

2. 

Department of Mathematics, Shepherd University, Shepherdstown, WV 25443-5000, United States

Received  June 2011 Revised  June 2012 Published  August 2012

We study existence and spectral stability of stationary solutions of the Dafermos regularization of a much-studied diffusive-dispersive equation with cubic flux. Our study includes stationary solutions that corresponds to Riemann solutions consisting of an undercompressive shock wave followed by a compressive shock wave. We use geometric singular perturbation theory (1) to construct the solutions, and (2) to show that asmptotically, there are no large eigenvalues, and any order-one eigenvalues must be near $-1$ or a certain number $\lambda^*$. We give numerical evidence that $\lambda^*$ is also $-1$. Finally, we use pseudoexponential dichotomies to show that in a space of exponentially decreasing functions, the essential spectrum is contained in Re$ \lambda \le -\delta <0 $.
Citation: Stephen Schecter, Monique Richardson Taylor. Dafermos regularization of a diffusive-dispersive equation with cubic flux. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4069-4110. doi: 10.3934/dcds.2012.32.4069
References:
[1]

A. Azevedo, D. Marchesin, B. J. Plohr and K. Zumbrun, Nonuniqueness of solutions of Riemann problems,, Zeit. angew. Math. Phys., 47 (1996), 977. doi: 10.1007/BF00920046. Google Scholar

[2]

C. M. Dafermos, Solution of the Riemann problem for a class of hyperbolic systems of conservation lawsby the viscosity method,, Arch. Ration. Mech. Anal., 52 (1973), 1. doi: 10.1007/BF00249087. Google Scholar

[3]

J. Dodd, Spectral stability of undercompressive shock profile solutions of a modified KdV-Burgers equation,, Electron. J. Differential Equations, 2007 (). Google Scholar

[4]

P. Howard and K. Zumbrun, Pointwise estimates and stability for dispersive-diffusive shock waves,, Arch. Ration. Mech. Anal., 155 (2000), 85. doi: 10.1007/s002050000110. Google Scholar

[5]

P. Howard and K. Zumbrun, The Evans function and stability criteria for degenerate viscous shock waves,, Discrete Contin. Dyn. Syst., 10 (2004), 837. doi: 10.3934/dcds.2004.10.837. Google Scholar

[6]

D. Jacobs, B. McKinney and M. Shearer, Travelling wave solutions of the modified Korteweg-de Vries-Burgers equation,, J. Differential Equations, 116 (1995), 448. doi: 10.1006/jdeq.1995.1043. Google Scholar

[7]

T. J. Kaper and C. K. R. T. Jones, A primer on the exchange lemma for fast-slow systems., Multiple-time-scale dynamical systems (Minneapolis, 122 (1997), 65. Google Scholar

[8]

C. K. R. T. Jones, Geometric singular perturbation theory,, Dynamical systems (Montecatini Terme, 1609 (1994), 44. Google Scholar

[9]

C. K. R. T. Jones and N. Kopell, Tracking invariant manifolds withdifferential forms in singularly perturbed systems,, J. Differential Equations, 108 (1994), 64. doi: 10.1006/jdeq.1994.1025. Google Scholar

[10]

C. K. R. T. Jones and S.-K. Tin, Generalized exchange lemmas and orbits heteroclinic to invariant manifolds,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 967. doi: 10.3934/dcdss.2009.2.967. Google Scholar

[11]

K. T. Joseph and P. G. LeFloch, Singular limits for the Riemann problem: general diffusion, relaxation, and boundary conditions,, Analytical Approaches to Multidimensional Balance Laws, (2006), 143. Google Scholar

[12]

K. T. Joseph and P. G. LeFloch, Singular limits in phase dynamics with physical viscosity and capillarity,, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 1287. doi: 10.1017/S030821050600093X. Google Scholar

[13]

P. G. LeFloch, "Hyperbolic Systems of Conservation Laws. The Theory of Classical and Nonclassical Shock Waves,", Lectures in Mathematics ETH Zuich, (2002). Google Scholar

[14]

P. G. LeFloch and C. Rohde, Zero diffusion-dispersion limits for self-similar Riemann solutions to hyperbolic systems of conservation laws,, Indiana Univ. Math. J., 50 (2001), 1707. doi: 10.1512/iumj.2001.50.2057. Google Scholar

[15]

X.-B. Lin, Analytic semigroup generated by the linearization of a Riemann-Dafermos solution,, Dyn. Partial Differ. Equ., 1 (2004), 193. Google Scholar

[16]

X.-B. Lin, Slow eigenvalues of self-similar solutions of the Dafermos regularization of a system of conservation laws: an analytic approach,, J. Dynam. Differential Equations, 18 (2006), 1. doi: 10.1007/s10884-005-9001-2. Google Scholar

[17]

X.-B. Lin and S. Schecter, Stability of self-similar solutions of the Dafermos regularization of a system of conservation laws,, SIAM J. Math. Anal., 35 (2003), 884. doi: 10.1137/S0036141002405029. Google Scholar

[18]

T.-P. Liu, Nonlinear stability of shock waves for viscous conservation laws,, Mem. Amer. Math. Soc., 56 (1985), 1. Google Scholar

[19]

W. Liu, Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conservation laws,, Discrete Contin. Dyn. Syst., 10 (2004), 871. doi: 10.3934/dcds.2004.10.871. Google Scholar

[20]

B. Sandstede, Stability of traveling waves,, in, (2002), 983. doi: 10.1016/S1874-575X(02)80039-X. Google Scholar

[21]

S. Schecter, Undercompressive shock waves and the Dafermos regularization,, Nonlinearity, 15 (2002), 1361. doi: 10.1088/0951-7715/15/4/318. Google Scholar

[22]

S. Schecter, Eigenvalues of self-similar solutions of the Dafermos regularization of a system of conservation laws via geometric singular perturbation theory,, J. Dynam. Differential Equations, 18 (2006), 53. doi: 10.1007/s10884-005-9000-3. Google Scholar

[23]

S. Schecter and P. Szmolyan, Composite waves in the Dafermos regularization,, J. Dynam. Differential Equations, 16 (2004), 847. doi: 10.1007/s10884-004-6698-2. Google Scholar

[24]

S. Schecter and P. Szmolyan, Persistence of rarefactions under Dafermos regularization: blow-up and an exchange lemma for gain-of-stability turning points,, SIAM J. Appl. Dyn. Syst., 8 (2009), 822. doi: 10.1137/080715305. Google Scholar

[25]

A. Szepessy and K. Zumbrun, Stability of rarefaction waves in viscous media,, Arch. Ration. Mech. Anal., 133 (1996), 249. doi: 10.1007/BF00380894. Google Scholar

[26]

V. A. Tupčiev, On the splitting of an arbitrary discontinuity for a system of two first-order quasi-linear equations,, Ž. Vyčisl. Mat. i Mat. Fiz., 4 (1964), 817. Google Scholar

[27]

V. A. Tupčiev, The method of introducing a viscosity in the study of a problem of decay of a discontinuity,, Dokl. Akad. Nauk SSSR, 211 (1973), 55. Google Scholar

[28]

A. E. Tzavaras, Wave interactions and variation estimates for self-similar zero-viscosity limits in systems of conservation laws,, Arch. Ration. Mech. Anal., 135 (1996), 1. doi: 10.1007/BF02198434. Google Scholar

[29]

K. Zumbrun and P. Howard, Pointwise semigroup methods and stability of viscous shock waves,, Indiana Univ. Math. J., 47 (1998), 741. doi: 10.1512/iumj.1998.47.1604. Google Scholar

show all references

References:
[1]

A. Azevedo, D. Marchesin, B. J. Plohr and K. Zumbrun, Nonuniqueness of solutions of Riemann problems,, Zeit. angew. Math. Phys., 47 (1996), 977. doi: 10.1007/BF00920046. Google Scholar

[2]

C. M. Dafermos, Solution of the Riemann problem for a class of hyperbolic systems of conservation lawsby the viscosity method,, Arch. Ration. Mech. Anal., 52 (1973), 1. doi: 10.1007/BF00249087. Google Scholar

[3]

J. Dodd, Spectral stability of undercompressive shock profile solutions of a modified KdV-Burgers equation,, Electron. J. Differential Equations, 2007 (). Google Scholar

[4]

P. Howard and K. Zumbrun, Pointwise estimates and stability for dispersive-diffusive shock waves,, Arch. Ration. Mech. Anal., 155 (2000), 85. doi: 10.1007/s002050000110. Google Scholar

[5]

P. Howard and K. Zumbrun, The Evans function and stability criteria for degenerate viscous shock waves,, Discrete Contin. Dyn. Syst., 10 (2004), 837. doi: 10.3934/dcds.2004.10.837. Google Scholar

[6]

D. Jacobs, B. McKinney and M. Shearer, Travelling wave solutions of the modified Korteweg-de Vries-Burgers equation,, J. Differential Equations, 116 (1995), 448. doi: 10.1006/jdeq.1995.1043. Google Scholar

[7]

T. J. Kaper and C. K. R. T. Jones, A primer on the exchange lemma for fast-slow systems., Multiple-time-scale dynamical systems (Minneapolis, 122 (1997), 65. Google Scholar

[8]

C. K. R. T. Jones, Geometric singular perturbation theory,, Dynamical systems (Montecatini Terme, 1609 (1994), 44. Google Scholar

[9]

C. K. R. T. Jones and N. Kopell, Tracking invariant manifolds withdifferential forms in singularly perturbed systems,, J. Differential Equations, 108 (1994), 64. doi: 10.1006/jdeq.1994.1025. Google Scholar

[10]

C. K. R. T. Jones and S.-K. Tin, Generalized exchange lemmas and orbits heteroclinic to invariant manifolds,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 967. doi: 10.3934/dcdss.2009.2.967. Google Scholar

[11]

K. T. Joseph and P. G. LeFloch, Singular limits for the Riemann problem: general diffusion, relaxation, and boundary conditions,, Analytical Approaches to Multidimensional Balance Laws, (2006), 143. Google Scholar

[12]

K. T. Joseph and P. G. LeFloch, Singular limits in phase dynamics with physical viscosity and capillarity,, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 1287. doi: 10.1017/S030821050600093X. Google Scholar

[13]

P. G. LeFloch, "Hyperbolic Systems of Conservation Laws. The Theory of Classical and Nonclassical Shock Waves,", Lectures in Mathematics ETH Zuich, (2002). Google Scholar

[14]

P. G. LeFloch and C. Rohde, Zero diffusion-dispersion limits for self-similar Riemann solutions to hyperbolic systems of conservation laws,, Indiana Univ. Math. J., 50 (2001), 1707. doi: 10.1512/iumj.2001.50.2057. Google Scholar

[15]

X.-B. Lin, Analytic semigroup generated by the linearization of a Riemann-Dafermos solution,, Dyn. Partial Differ. Equ., 1 (2004), 193. Google Scholar

[16]

X.-B. Lin, Slow eigenvalues of self-similar solutions of the Dafermos regularization of a system of conservation laws: an analytic approach,, J. Dynam. Differential Equations, 18 (2006), 1. doi: 10.1007/s10884-005-9001-2. Google Scholar

[17]

X.-B. Lin and S. Schecter, Stability of self-similar solutions of the Dafermos regularization of a system of conservation laws,, SIAM J. Math. Anal., 35 (2003), 884. doi: 10.1137/S0036141002405029. Google Scholar

[18]

T.-P. Liu, Nonlinear stability of shock waves for viscous conservation laws,, Mem. Amer. Math. Soc., 56 (1985), 1. Google Scholar

[19]

W. Liu, Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conservation laws,, Discrete Contin. Dyn. Syst., 10 (2004), 871. doi: 10.3934/dcds.2004.10.871. Google Scholar

[20]

B. Sandstede, Stability of traveling waves,, in, (2002), 983. doi: 10.1016/S1874-575X(02)80039-X. Google Scholar

[21]

S. Schecter, Undercompressive shock waves and the Dafermos regularization,, Nonlinearity, 15 (2002), 1361. doi: 10.1088/0951-7715/15/4/318. Google Scholar

[22]

S. Schecter, Eigenvalues of self-similar solutions of the Dafermos regularization of a system of conservation laws via geometric singular perturbation theory,, J. Dynam. Differential Equations, 18 (2006), 53. doi: 10.1007/s10884-005-9000-3. Google Scholar

[23]

S. Schecter and P. Szmolyan, Composite waves in the Dafermos regularization,, J. Dynam. Differential Equations, 16 (2004), 847. doi: 10.1007/s10884-004-6698-2. Google Scholar

[24]

S. Schecter and P. Szmolyan, Persistence of rarefactions under Dafermos regularization: blow-up and an exchange lemma for gain-of-stability turning points,, SIAM J. Appl. Dyn. Syst., 8 (2009), 822. doi: 10.1137/080715305. Google Scholar

[25]

A. Szepessy and K. Zumbrun, Stability of rarefaction waves in viscous media,, Arch. Ration. Mech. Anal., 133 (1996), 249. doi: 10.1007/BF00380894. Google Scholar

[26]

V. A. Tupčiev, On the splitting of an arbitrary discontinuity for a system of two first-order quasi-linear equations,, Ž. Vyčisl. Mat. i Mat. Fiz., 4 (1964), 817. Google Scholar

[27]

V. A. Tupčiev, The method of introducing a viscosity in the study of a problem of decay of a discontinuity,, Dokl. Akad. Nauk SSSR, 211 (1973), 55. Google Scholar

[28]

A. E. Tzavaras, Wave interactions and variation estimates for self-similar zero-viscosity limits in systems of conservation laws,, Arch. Ration. Mech. Anal., 135 (1996), 1. doi: 10.1007/BF02198434. Google Scholar

[29]

K. Zumbrun and P. Howard, Pointwise semigroup methods and stability of viscous shock waves,, Indiana Univ. Math. J., 47 (1998), 741. doi: 10.1512/iumj.1998.47.1604. Google Scholar

[1]

Ilona Gucwa, Peter Szmolyan. Geometric singular perturbation analysis of an autocatalator model. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 783-806. doi: 10.3934/dcdss.2009.2.783

[2]

Éder Rítis Aragão Costa. An extension of the concept of exponential dichotomy in Fréchet spaces which is stable under perturbation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 845-868. doi: 10.3934/cpaa.2019041

[3]

Fabio Camilli, Annalisa Cesaroni. A note on singular perturbation problems via Aubry-Mather theory. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 807-819. doi: 10.3934/dcds.2007.17.807

[4]

Wei Wang, Yan Lv. Limit behavior of nonlinear stochastic wave equations with singular perturbation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 175-193. doi: 10.3934/dcdsb.2010.13.175

[5]

John M. Hong, Cheng-Hsiung Hsu, Bo-Chih Huang, Tzi-Sheng Yang. Geometric singular perturbation approach to the existence and instability of stationary waves for viscous traffic flow models. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1501-1526. doi: 10.3934/cpaa.2013.12.1501

[6]

Stéphane Chrétien, Sébastien Darses, Christophe Guyeux, Paul Clarkson. On the pinning controllability of complex networks using perturbation theory of extreme singular values. application to synchronisation in power grids. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 289-299. doi: 10.3934/naco.2017019

[7]

Heinz Schättler, Urszula Ledzewicz. Perturbation feedback control: A geometric interpretation. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 631-654. doi: 10.3934/naco.2012.2.631

[8]

Mihail Megan, Adina Luminiţa Sasu, Bogdan Sasu. Discrete admissibility and exponential dichotomy for evolution families. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 383-397. doi: 10.3934/dcds.2003.9.383

[9]

Cristóbal Rodero, J. Alberto Conejero, Ignacio García-Fernández. Shock wave formation in compliant arteries. Evolution Equations & Control Theory, 2019, 8 (1) : 221-230. doi: 10.3934/eect.2019012

[10]

Shi Jin, Dongsheng Yin. Computational high frequency wave diffraction by a corner via the Liouville equation and geometric theory of diffraction. Kinetic & Related Models, 2011, 4 (1) : 295-316. doi: 10.3934/krm.2011.4.295

[11]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[12]

Simone Farinelli. Geometric arbitrage theory and market dynamics. Journal of Geometric Mechanics, 2015, 7 (4) : 431-471. doi: 10.3934/jgm.2015.7.431

[13]

Andrew D. Lewis, David R. Tyner. Geometric Jacobian linearization and LQR theory. Journal of Geometric Mechanics, 2010, 2 (4) : 397-440. doi: 10.3934/jgm.2010.2.397

[14]

Ulrike Kant, Werner M. Seiler. Singularities in the geometric theory of differential equations. Conference Publications, 2011, 2011 (Special) : 784-793. doi: 10.3934/proc.2011.2011.784

[15]

Tohru Nakamura, Shuichi Kawashima. Viscous shock profile and singular limit for hyperbolic systems with Cattaneo's law. Kinetic & Related Models, 2018, 11 (4) : 795-819. doi: 10.3934/krm.2018032

[16]

John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations & Control Theory, 2019, 8 (1) : 1-29. doi: 10.3934/eect.2019001

[17]

Sondes khabthani, Lassaad Elasmi, François Feuillebois. Perturbation solution of the coupled Stokes-Darcy problem. Discrete & Continuous Dynamical Systems - B, 2011, 15 (4) : 971-990. doi: 10.3934/dcdsb.2011.15.971

[18]

Roberto Garrappa, Eleonora Messina, Antonia Vecchio. Effect of perturbation in the numerical solution of fractional differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2679-2694. doi: 10.3934/dcdsb.2017188

[19]

Eun Heui Kim, Charis Tsikkou. Two dimensional Riemann problems for the nonlinear wave system: Rarefaction wave interactions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6257-6289. doi: 10.3934/dcds.2017271

[20]

Manfred Deistler. Singular arma systems: A structure theory. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 383-391. doi: 10.3934/naco.2019025

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]