• Previous Article
    Characterization of turing diffusion-driven instability on evolving domains
  • DCDS Home
  • This Issue
  • Next Article
    Multiplicity of solutions of variational systems involving $\phi$-Laplacians with singular $\phi$ and periodic nonlinearities
November  2012, 32(11): 4001-4014. doi: 10.3934/dcds.2012.32.4001

Blow-up phenomena in reaction-diffusion systems

1. 

Dipartimento di Matematica e Informatica, Università di Cagliari, 09123, Italy, Italy

Received  December 2010 Revised  September 2011 Published  June 2012

In this paper we deal with the blow-up phenomena of solutions to two different classes of reaction-diffusion systems coupled through nonlinearities with nonlinear boundary conditions. By using a differential inequality technique, we derive upper and lower bounds for the blow-up time, if blow-up occurs. Moreover by introducing suitable auxiliary functions, we give sufficient conditions on data in order to obtain global existence.
Citation: Monica Marras, Stella Vernier Piro. Blow-up phenomena in reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4001-4014. doi: 10.3934/dcds.2012.32.4001
References:
[1]

J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinearevolution equations,, Quart. J. Math. Oxford, (1977), 473. doi: 10.1093/qmath/28.4.473. Google Scholar

[2]

C. Bandle and H. Brunner, Blow-up in diffusion equations,, A survey, 97 (1998), 3. Google Scholar

[3]

M. Chipot, M. Fila and P. Quittner, Stationary solutions, blow-up and convergence to stationary solutions for semilinear parabolic equations with nonlinear boundary conditions,, Acta Math.Univ. Comenian. (N.S.), LX (1991). Google Scholar

[4]

A. A. Lacey, Diffusion models with blow-up,, J.Comput. Appl. Math., 97 (1998), 39. doi: 10.1016/S0377-0427(98)00105-8. Google Scholar

[5]

J. López-Gómez, V. Márquez and N. Wolanski, Blow up results and localization of blow up points for the heat equation with a nonlinear boundary condition,, J. Diff. Equ., 92 (1991), 384. doi: 10.1016/0022-0396(91)90056-F. Google Scholar

[6]

J. López-Gómez, V. Márquez and N. Wolanski, "Global Behaviour of Positive Solutions to a Semilinear Equation with a Nonlinear Flux Condition,", IMA Preprint Series, 810 (1991). Google Scholar

[7]

H. Kielhöfer, Halbgruppen und semilineare Anfangs-randwert-probleme,, Manuscripta Math. \textbf{12} (1974), 12 (1974), 121. Google Scholar

[8]

M. Marras, Bounds for blow-up time in nonlinear parabolic systems under various boundary conditions,, Numer. Funct. Anal. Optim., 32 (2010), 453. Google Scholar

[9]

L. E. Payne, G. A. Philippin and S. Vernier-Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition I,, Z. Angew. Math. Phys., 61 (2010), 971. doi: 10.1007/s00033-010-0071-6. Google Scholar

[10]

L. E. Payne, G. A. Philippin and S. Vernier-Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition II,, Nonlinear Analysis, 73 (2010), 971. doi: 10.1016/j.na.2010.04.023. Google Scholar

[11]

L. E. Payne and P. W. Schaefer, Blow-up phenomena for some nonlinear parabolic systems,, Int. J. Pure Appl. Math., 48 (2008), 193. Google Scholar

[12]

G. A. Philippin and V. Proytcheva, Some remarks on the asymptotic behaviour of the solutions of a class of parabolic problems,, Math.Meth. Appl. Sci., 29 (2006), 297. doi: 10.1002/mma.679. Google Scholar

[13]

P. Quittner, On global existence and stationary solutions of two classes of semilinear parabolic equations,, Comm.Math. Univ.Carolinae, 34 (1993), 105. Google Scholar

[14]

P. Quittner and P. Souplet, "Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States,", Birkh\, (2007). Google Scholar

[15]

B. Straughan, "Explosive Instabilities in Mechanics,", Springer, (1998). Google Scholar

[16]

J. L. Vázquez, The problems of blow-up for nonlinear heat equations. Complete blow-up and avalanche formation,, Rend. Mat. Acc. Lincei s. IX, 15 (2004), 281. Google Scholar

[17]

F. B. Weissler, Local existence and nonexistence for semilinear parabolic equations in $L^p$,, Indiana Univ. Math. J., 29 (1980), 79. doi: 10.1512/iumj.1980.29.29007. Google Scholar

[18]

F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation,, Israel J. Math., 38 (1981), 29. doi: 10.1007/BF02761845. Google Scholar

show all references

References:
[1]

J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinearevolution equations,, Quart. J. Math. Oxford, (1977), 473. doi: 10.1093/qmath/28.4.473. Google Scholar

[2]

C. Bandle and H. Brunner, Blow-up in diffusion equations,, A survey, 97 (1998), 3. Google Scholar

[3]

M. Chipot, M. Fila and P. Quittner, Stationary solutions, blow-up and convergence to stationary solutions for semilinear parabolic equations with nonlinear boundary conditions,, Acta Math.Univ. Comenian. (N.S.), LX (1991). Google Scholar

[4]

A. A. Lacey, Diffusion models with blow-up,, J.Comput. Appl. Math., 97 (1998), 39. doi: 10.1016/S0377-0427(98)00105-8. Google Scholar

[5]

J. López-Gómez, V. Márquez and N. Wolanski, Blow up results and localization of blow up points for the heat equation with a nonlinear boundary condition,, J. Diff. Equ., 92 (1991), 384. doi: 10.1016/0022-0396(91)90056-F. Google Scholar

[6]

J. López-Gómez, V. Márquez and N. Wolanski, "Global Behaviour of Positive Solutions to a Semilinear Equation with a Nonlinear Flux Condition,", IMA Preprint Series, 810 (1991). Google Scholar

[7]

H. Kielhöfer, Halbgruppen und semilineare Anfangs-randwert-probleme,, Manuscripta Math. \textbf{12} (1974), 12 (1974), 121. Google Scholar

[8]

M. Marras, Bounds for blow-up time in nonlinear parabolic systems under various boundary conditions,, Numer. Funct. Anal. Optim., 32 (2010), 453. Google Scholar

[9]

L. E. Payne, G. A. Philippin and S. Vernier-Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition I,, Z. Angew. Math. Phys., 61 (2010), 971. doi: 10.1007/s00033-010-0071-6. Google Scholar

[10]

L. E. Payne, G. A. Philippin and S. Vernier-Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition II,, Nonlinear Analysis, 73 (2010), 971. doi: 10.1016/j.na.2010.04.023. Google Scholar

[11]

L. E. Payne and P. W. Schaefer, Blow-up phenomena for some nonlinear parabolic systems,, Int. J. Pure Appl. Math., 48 (2008), 193. Google Scholar

[12]

G. A. Philippin and V. Proytcheva, Some remarks on the asymptotic behaviour of the solutions of a class of parabolic problems,, Math.Meth. Appl. Sci., 29 (2006), 297. doi: 10.1002/mma.679. Google Scholar

[13]

P. Quittner, On global existence and stationary solutions of two classes of semilinear parabolic equations,, Comm.Math. Univ.Carolinae, 34 (1993), 105. Google Scholar

[14]

P. Quittner and P. Souplet, "Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States,", Birkh\, (2007). Google Scholar

[15]

B. Straughan, "Explosive Instabilities in Mechanics,", Springer, (1998). Google Scholar

[16]

J. L. Vázquez, The problems of blow-up for nonlinear heat equations. Complete blow-up and avalanche formation,, Rend. Mat. Acc. Lincei s. IX, 15 (2004), 281. Google Scholar

[17]

F. B. Weissler, Local existence and nonexistence for semilinear parabolic equations in $L^p$,, Indiana Univ. Math. J., 29 (1980), 79. doi: 10.1512/iumj.1980.29.29007. Google Scholar

[18]

F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation,, Israel J. Math., 38 (1981), 29. doi: 10.1007/BF02761845. Google Scholar

[1]

Monica Marras, Stella Vernier Piro. On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients. Conference Publications, 2013, 2013 (special) : 535-544. doi: 10.3934/proc.2013.2013.535

[2]

Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051

[3]

Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058

[4]

Julián López-Gómez, Pavol Quittner. Complete and energy blow-up in indefinite superlinear parabolic problems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 169-186. doi: 10.3934/dcds.2006.14.169

[5]

Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072

[6]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[7]

Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267

[8]

Shiming Li, Yongsheng Li, Wei Yan. A global existence and blow-up threshold for Davey-Stewartson equations in $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1899-1912. doi: 10.3934/dcdss.2016077

[9]

Shuyin Wu, Joachim Escher, Zhaoyang Yin. Global existence and blow-up phenomena for a weakly dissipative Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 633-645. doi: 10.3934/dcdsb.2009.12.633

[10]

Lili Du, Chunlai Mu, Zhaoyin Xiang. Global existence and blow-up to a reaction-diffusion system with nonlinear memory. Communications on Pure & Applied Analysis, 2005, 4 (4) : 721-733. doi: 10.3934/cpaa.2005.4.721

[11]

Shu-Xiang Huang, Fu-Cai Li, Chun-Hong Xie. Global existence and blow-up of solutions to a nonlocal reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1519-1532. doi: 10.3934/dcds.2003.9.1519

[12]

Zaihui Gan, Jian Zhang. Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 827-846. doi: 10.3934/dcds.2012.32.827

[13]

Bin Li. On the blow-up criterion and global existence of a nonlinear PDE system in biological transport networks. Kinetic & Related Models, 2019, 12 (5) : 1131-1162. doi: 10.3934/krm.2019043

[14]

Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-18. doi: 10.3934/dcdsb.2019169

[15]

Xiaoli Zhu, Fuyi Li, Ting Rong. Global existence and blow up of solutions to a class of pseudo-parabolic equations with an exponential source. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2465-2485. doi: 10.3934/cpaa.2015.14.2465

[16]

Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure & Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243

[17]

Yoshikazu Giga. Interior derivative blow-up for quasilinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 449-461. doi: 10.3934/dcds.1995.1.449

[18]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[19]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

[20]

Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]