November  2012, 32(11): 3895-3956. doi: 10.3934/dcds.2012.32.3895

On the behavior at collisions of solutions to Schrödinger equations with many-particle and cylindrical potentials

1. 

Università di Milano Bicocca, Dipartimento di Matematica e Applicazioni, Via Cozzi 53, 20125 Milano

2. 

Università degli Studi del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy

Received  July 2011 Revised  December 2011 Published  June 2012

The asymptotic behavior of solutions to Schrödinger equations with singular homogeneous potentials is investigated. Through an Almgren type monotonicity formula and separation of variables, we describe the exact asymptotics near the singularity of solutions to at most critical semilinear elliptic equations with cylindrical and quantum multi-body singular potentials. Furthermore, by an iterative Brezis-Kato procedure, pointwise upper estimate are derived.
Citation: Veronica Felli, Alberto Ferrero, Susanna Terracini. On the behavior at collisions of solutions to Schrödinger equations with many-particle and cylindrical potentials. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3895-3956. doi: 10.3934/dcds.2012.32.3895
References:
[1]

B. Abdellaoui, V. Felli and I. Peral, Some remarks on systems of elliptic equations doubly critical in the whole $\R^N$,, Calc. Var. Partial Differential Equations, 34 (2009), 97. doi: 10.1007/s00526-008-0177-2. Google Scholar

[2]

F. J. Almgren, Jr., $Q$ valued functions minimizing Dirichlet's integral and the regularity of area minimizing rectifiable currents up to codimension two,, Bull. Amer. Math. Soc. (N. S.), 8 (1983), 327. Google Scholar

[3]

M. Badiale, V. Benci and S. Rolando, A nonlinear elliptic equation with singular potential and applications to nonlinear field equations,, J. Eur. Math. Soc., 9 (2007), 355. Google Scholar

[4]

M. Badiale and S. Rolando, Elliptic problems with singular potential and double-power nonlinearity,, Mediterr. J. Math., 2 (2005), 417. Google Scholar

[5]

M. Badiale and G. Tarantello, A Sobolev-Hardy inequalitywith applications to a nonlinear elliptic equation arising inastrophysics,, Arch. Ration. Mech. Anal., 163 (2002), 259. doi: 10.1007/s002050200201. Google Scholar

[6]

H. Baum and A. Juhl, "Conformal Differential Geometry. Q-Curvature and Conformal Holonomy,", Oberwolfach Seminars, 40 (2010). Google Scholar

[7]

R. Bosi, J. Dolbeault and M. J. Esteban, Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators,, Commun. Pure Appl. Anal., 7 (2008), 533. Google Scholar

[8]

H. Brézis and T. Kato, Remarks on the Schrödinger operator with singular complex potentials,, J. Math. Pures Appl. (9), 58 (1979), 137. Google Scholar

[9]

V. S. Buslaev and S. B. Levin, Asymptotic behavior of the eigenfunctions of the many-particle Schrödinger operator. I. One-dimensional particles,, in, 225 (2008), 55. Google Scholar

[10]

L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights,, Compositio Math., 53 (1984), 259. Google Scholar

[11]

F. Catrina and Z.-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: Sharp constants, existence (and nonexistence), and symmetry of extremal functions,, Comm. Pure Appl. Math., 54 (2001), 229. doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I. Google Scholar

[12]

J. Chabrowski, A. Szulkin and M. Willem, Schrödinger equation with multiparticle potential and critical nonlinearity,, Topol. Meth. Nonl. Anal., 34 (2009), 201. Google Scholar

[13]

S.-Y. A. Chang, Conformal invariants and partial differential equations,, Bull. Amer. Math. Soc. (N.S.), 42 (2005), 365. doi: 10.1090/S0273-0979-05-01058-X. Google Scholar

[14]

J. Chen, Multiple positive solutions for a semilinear equation with prescribed singularity,, J. Math. Anal. Appl., 305 (2005), 140. doi: 10.1016/j.jmaa.2004.10.057. Google Scholar

[15]

T. Duyckaerts, Inégalités de résolvante pour l'opérateur de Schrödinger avec potentiel multipolaire critique,, Bulletin Bull. Soc. Math. France, 134 (2006), 201. Google Scholar

[16]

H. Egnell, Elliptic boundary value problems with singular coefficients and critical nonlinearities,, Indiana Univ. Math. J., 38 (1989), 235. doi: 10.1512/iumj.1989.38.38012. Google Scholar

[17]

V. Felli, A. Ferrero and S. Terracini, Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential,, Journal of the European Mathematical Society, 13 (2011), 119. doi: 10.4171/JEMS/246. Google Scholar

[18]

V. Felli, A. Ferrero and S. Terracini, A note on local asymptotics of solutions to singular elliptic equations via monotonicity methods,, Milan J. Math., (2012), 00032. Google Scholar

[19]

V. Felli, E. M. Marchini and S. Terracini, On Schrödinger operators with multipolar inverse-square potentials,, Journal of Functional Analysis, 250 (2007), 265. doi: 10.1016/j.jfa.2006.10.019. Google Scholar

[20]

V. Felli, E. M. Marchini and S. Terracini, On the behavior of solutions to Schrödinger equations with dipole type potentials near the singularity,, Discrete Contin. Dynam. Systems, 21 (2008), 91. doi: 10.3934/dcds.2008.21.91. Google Scholar

[21]

V. Felli, E. M. Marchini and S. Terracini, On Schrödinger operators with multisingular inverse-square anisotropic potentials,, Indiana Univ. Math. Journal, 58 (2009), 617. doi: 10.1512/iumj.2009.58.3471. Google Scholar

[22]

V. Felli and M. Schneider, A note on regularity of solutions to degenerate elliptic equations ofCaffarelli-Kohn-Nirenberg type,, Adv. Nonlinear Stud., 3 (2003), 431. Google Scholar

[23]

V. Felli and S. Terracini, Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity,, Comm. Partial Differential Equations, 31 (2006), 469. doi: 10.1080/03605300500394439. Google Scholar

[24]

A. Ferrero and F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations,, J. Differential Equations, 177 (2001), 494. doi: 10.1006/jdeq.2000.3999. Google Scholar

[25]

J. García Azorero and I. Peral Alonso, Hardy Inequalities and some critical elliptic and parabolic problems,, J. Diff. Equations, 144 (1998), 441. doi: 10.1006/jdeq.1997.3375. Google Scholar

[26]

N. Garofalo and F.-H. Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation,, Indiana Univ. Math. J., 35 (1986), 245. doi: 10.1512/iumj.1986.35.35015. Google Scholar

[27]

M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev and J. Tidblom, Many-particle Hardy inequalities,, J. Lond. Math. Soc. (2), 77 (2008), 99. doi: 10.1112/jlms/jdm091. Google Scholar

[28]

W. Hunziker and I. Sigal, The quantum $N$-body problem,, J. Math. Phys., 41 (2000), 3448. doi: 10.1063/1.533319. Google Scholar

[29]

E. Jannelli, The role played by space dimension in elliptic critical problems,, J. Differential Equations, 156 (1999), 407. doi: 10.1006/jdeq.1998.3589. Google Scholar

[30]

M. Lesch, "Operators of Fuchs Type, Conical Singularities, and Asymptotic Methods,", Teubner Texts in Mathematics, 136 (1997). Google Scholar

[31]

E. H. Lieb and W. E. Thirring, Gravitational collapse in quantum mechanics with relativistic kinetic energy,, Ann. Physics, 155 (1984), 494. doi: 10.1016/0003-4916(84)90010-1. Google Scholar

[32]

G. Mancini, I. Fabbri and K. Sandeep, Classification of solutions of a critical Hardy-Sobolev operator,, J. Differential Equations, 224 (2006), 258. doi: 10.1016/j.jde.2005.07.001. Google Scholar

[33]

V. G. Maz'ja, "Sobolev Spaces,", Springer Series in Soviet Mathematics, (1985). Google Scholar

[34]

R. Mazzeo, Elliptic theory of differential edge operators. I,, Comm. Partial Differential Equations, 16 (1991), 1615. doi: 10.1080/03605309108820815. Google Scholar

[35]

R. Mazzeo, Regularity for the singular Yamabe problem,, Indiana Univ. Math. J., 40 (1991), 1277. doi: 10.1512/iumj.1991.40.40057. Google Scholar

[36]

R. Musina, Ground state solutions of a critical problem involving cylindrical weights,, Nonlin. Anal., 68 (2008), 3972. doi: 10.1016/j.na.2007.04.034. Google Scholar

[37]

Y. Pinchover, On positive Liouville theorems and asymptotic behavior of solutions of Fuchsian type elliptic operators,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 313. Google Scholar

[38]

P. Pucci and J. Serrin, A general variational identity,, Indiana Univ. Math. J., 35 (1986), 681. doi: 10.1512/iumj.1986.35.35036. Google Scholar

[39]

S. Secchi, D. Smets and M. Willem, Remarks on a Hardy-Sobolev inequality,, C. R. Math. Acad. Sci. Paris, 336 (2003), 811. doi: 10.1016/S1631-073X(03)00202-4. Google Scholar

[40]

D. Smets, Nonlinear Schrödinger equations withHardy potential and critical nonlinearities,, Trans. AMS, 357 (2005), 2909. doi: 10.1090/S0002-9947-04-03769-9. Google Scholar

[41]

M. Struwe, "Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,", Springer-Verlag, (1990). Google Scholar

[42]

S. Terracini, On positive entire solutions to a class of equations with singular coefficient and critical exponent,, Adv. Diff. Equa., 1 (1996), 241. Google Scholar

[43]

Z.-Q. Wang and M. Zhu, Hardy inequalities with boundary terms,, Electron. J. Differential Equations, 2003 (). Google Scholar

[44]

T. H. Wolff, A property of measures in $\R^ N$ and an application to unique continuation,, Geom. Funct. Anal., 2 (1992), 225. Google Scholar

show all references

References:
[1]

B. Abdellaoui, V. Felli and I. Peral, Some remarks on systems of elliptic equations doubly critical in the whole $\R^N$,, Calc. Var. Partial Differential Equations, 34 (2009), 97. doi: 10.1007/s00526-008-0177-2. Google Scholar

[2]

F. J. Almgren, Jr., $Q$ valued functions minimizing Dirichlet's integral and the regularity of area minimizing rectifiable currents up to codimension two,, Bull. Amer. Math. Soc. (N. S.), 8 (1983), 327. Google Scholar

[3]

M. Badiale, V. Benci and S. Rolando, A nonlinear elliptic equation with singular potential and applications to nonlinear field equations,, J. Eur. Math. Soc., 9 (2007), 355. Google Scholar

[4]

M. Badiale and S. Rolando, Elliptic problems with singular potential and double-power nonlinearity,, Mediterr. J. Math., 2 (2005), 417. Google Scholar

[5]

M. Badiale and G. Tarantello, A Sobolev-Hardy inequalitywith applications to a nonlinear elliptic equation arising inastrophysics,, Arch. Ration. Mech. Anal., 163 (2002), 259. doi: 10.1007/s002050200201. Google Scholar

[6]

H. Baum and A. Juhl, "Conformal Differential Geometry. Q-Curvature and Conformal Holonomy,", Oberwolfach Seminars, 40 (2010). Google Scholar

[7]

R. Bosi, J. Dolbeault and M. J. Esteban, Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators,, Commun. Pure Appl. Anal., 7 (2008), 533. Google Scholar

[8]

H. Brézis and T. Kato, Remarks on the Schrödinger operator with singular complex potentials,, J. Math. Pures Appl. (9), 58 (1979), 137. Google Scholar

[9]

V. S. Buslaev and S. B. Levin, Asymptotic behavior of the eigenfunctions of the many-particle Schrödinger operator. I. One-dimensional particles,, in, 225 (2008), 55. Google Scholar

[10]

L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights,, Compositio Math., 53 (1984), 259. Google Scholar

[11]

F. Catrina and Z.-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: Sharp constants, existence (and nonexistence), and symmetry of extremal functions,, Comm. Pure Appl. Math., 54 (2001), 229. doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I. Google Scholar

[12]

J. Chabrowski, A. Szulkin and M. Willem, Schrödinger equation with multiparticle potential and critical nonlinearity,, Topol. Meth. Nonl. Anal., 34 (2009), 201. Google Scholar

[13]

S.-Y. A. Chang, Conformal invariants and partial differential equations,, Bull. Amer. Math. Soc. (N.S.), 42 (2005), 365. doi: 10.1090/S0273-0979-05-01058-X. Google Scholar

[14]

J. Chen, Multiple positive solutions for a semilinear equation with prescribed singularity,, J. Math. Anal. Appl., 305 (2005), 140. doi: 10.1016/j.jmaa.2004.10.057. Google Scholar

[15]

T. Duyckaerts, Inégalités de résolvante pour l'opérateur de Schrödinger avec potentiel multipolaire critique,, Bulletin Bull. Soc. Math. France, 134 (2006), 201. Google Scholar

[16]

H. Egnell, Elliptic boundary value problems with singular coefficients and critical nonlinearities,, Indiana Univ. Math. J., 38 (1989), 235. doi: 10.1512/iumj.1989.38.38012. Google Scholar

[17]

V. Felli, A. Ferrero and S. Terracini, Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential,, Journal of the European Mathematical Society, 13 (2011), 119. doi: 10.4171/JEMS/246. Google Scholar

[18]

V. Felli, A. Ferrero and S. Terracini, A note on local asymptotics of solutions to singular elliptic equations via monotonicity methods,, Milan J. Math., (2012), 00032. Google Scholar

[19]

V. Felli, E. M. Marchini and S. Terracini, On Schrödinger operators with multipolar inverse-square potentials,, Journal of Functional Analysis, 250 (2007), 265. doi: 10.1016/j.jfa.2006.10.019. Google Scholar

[20]

V. Felli, E. M. Marchini and S. Terracini, On the behavior of solutions to Schrödinger equations with dipole type potentials near the singularity,, Discrete Contin. Dynam. Systems, 21 (2008), 91. doi: 10.3934/dcds.2008.21.91. Google Scholar

[21]

V. Felli, E. M. Marchini and S. Terracini, On Schrödinger operators with multisingular inverse-square anisotropic potentials,, Indiana Univ. Math. Journal, 58 (2009), 617. doi: 10.1512/iumj.2009.58.3471. Google Scholar

[22]

V. Felli and M. Schneider, A note on regularity of solutions to degenerate elliptic equations ofCaffarelli-Kohn-Nirenberg type,, Adv. Nonlinear Stud., 3 (2003), 431. Google Scholar

[23]

V. Felli and S. Terracini, Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity,, Comm. Partial Differential Equations, 31 (2006), 469. doi: 10.1080/03605300500394439. Google Scholar

[24]

A. Ferrero and F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations,, J. Differential Equations, 177 (2001), 494. doi: 10.1006/jdeq.2000.3999. Google Scholar

[25]

J. García Azorero and I. Peral Alonso, Hardy Inequalities and some critical elliptic and parabolic problems,, J. Diff. Equations, 144 (1998), 441. doi: 10.1006/jdeq.1997.3375. Google Scholar

[26]

N. Garofalo and F.-H. Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation,, Indiana Univ. Math. J., 35 (1986), 245. doi: 10.1512/iumj.1986.35.35015. Google Scholar

[27]

M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev and J. Tidblom, Many-particle Hardy inequalities,, J. Lond. Math. Soc. (2), 77 (2008), 99. doi: 10.1112/jlms/jdm091. Google Scholar

[28]

W. Hunziker and I. Sigal, The quantum $N$-body problem,, J. Math. Phys., 41 (2000), 3448. doi: 10.1063/1.533319. Google Scholar

[29]

E. Jannelli, The role played by space dimension in elliptic critical problems,, J. Differential Equations, 156 (1999), 407. doi: 10.1006/jdeq.1998.3589. Google Scholar

[30]

M. Lesch, "Operators of Fuchs Type, Conical Singularities, and Asymptotic Methods,", Teubner Texts in Mathematics, 136 (1997). Google Scholar

[31]

E. H. Lieb and W. E. Thirring, Gravitational collapse in quantum mechanics with relativistic kinetic energy,, Ann. Physics, 155 (1984), 494. doi: 10.1016/0003-4916(84)90010-1. Google Scholar

[32]

G. Mancini, I. Fabbri and K. Sandeep, Classification of solutions of a critical Hardy-Sobolev operator,, J. Differential Equations, 224 (2006), 258. doi: 10.1016/j.jde.2005.07.001. Google Scholar

[33]

V. G. Maz'ja, "Sobolev Spaces,", Springer Series in Soviet Mathematics, (1985). Google Scholar

[34]

R. Mazzeo, Elliptic theory of differential edge operators. I,, Comm. Partial Differential Equations, 16 (1991), 1615. doi: 10.1080/03605309108820815. Google Scholar

[35]

R. Mazzeo, Regularity for the singular Yamabe problem,, Indiana Univ. Math. J., 40 (1991), 1277. doi: 10.1512/iumj.1991.40.40057. Google Scholar

[36]

R. Musina, Ground state solutions of a critical problem involving cylindrical weights,, Nonlin. Anal., 68 (2008), 3972. doi: 10.1016/j.na.2007.04.034. Google Scholar

[37]

Y. Pinchover, On positive Liouville theorems and asymptotic behavior of solutions of Fuchsian type elliptic operators,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 313. Google Scholar

[38]

P. Pucci and J. Serrin, A general variational identity,, Indiana Univ. Math. J., 35 (1986), 681. doi: 10.1512/iumj.1986.35.35036. Google Scholar

[39]

S. Secchi, D. Smets and M. Willem, Remarks on a Hardy-Sobolev inequality,, C. R. Math. Acad. Sci. Paris, 336 (2003), 811. doi: 10.1016/S1631-073X(03)00202-4. Google Scholar

[40]

D. Smets, Nonlinear Schrödinger equations withHardy potential and critical nonlinearities,, Trans. AMS, 357 (2005), 2909. doi: 10.1090/S0002-9947-04-03769-9. Google Scholar

[41]

M. Struwe, "Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,", Springer-Verlag, (1990). Google Scholar

[42]

S. Terracini, On positive entire solutions to a class of equations with singular coefficient and critical exponent,, Adv. Diff. Equa., 1 (1996), 241. Google Scholar

[43]

Z.-Q. Wang and M. Zhu, Hardy inequalities with boundary terms,, Electron. J. Differential Equations, 2003 (). Google Scholar

[44]

T. H. Wolff, A property of measures in $\R^ N$ and an application to unique continuation,, Geom. Funct. Anal., 2 (1992), 225. Google Scholar

[1]

Younghun Hong. Strichartz estimates for $N$-body Schrödinger operators with small potential interactions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5355-5365. doi: 10.3934/dcds.2017233

[2]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems & Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117

[3]

Roberta Bosi, Jean Dolbeault, Maria J. Esteban. Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators. Communications on Pure & Applied Analysis, 2008, 7 (3) : 533-562. doi: 10.3934/cpaa.2008.7.533

[4]

Woocheol Choi, Yong-Cheol Kim. The Malgrange-Ehrenpreis theorem for nonlocal Schrödinger operators with certain potentials. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1993-2010. doi: 10.3934/cpaa.2018095

[5]

Jussi Behrndt, A. F. M. ter Elst. The Dirichlet-to-Neumann map for Schrödinger operators with complex potentials. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 661-671. doi: 10.3934/dcdss.2017033

[6]

Xinlin Cao, Yi-Hsuan Lin, Hongyu Liu. Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators. Inverse Problems & Imaging, 2019, 13 (1) : 197-210. doi: 10.3934/ipi.2019011

[7]

Daniele Cassani, Bernhard Ruf, Cristina Tarsi. On the capacity approach to non-attainability of Hardy's inequality in $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 245-250. doi: 10.3934/dcdss.2019017

[8]

Holger Teismann. The Schrödinger equation with singular time-dependent potentials. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 705-722. doi: 10.3934/dcds.2000.6.705

[9]

Mouhamed Moustapha Fall, Veronica Felli. Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5827-5867. doi: 10.3934/dcds.2015.35.5827

[10]

Jun Cao, Der-Chen Chang, Dachun Yang, Sibei Yang. Boundedness of second order Riesz transforms associated to Schrödinger operators on Musielak-Orlicz-Hardy spaces. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1435-1463. doi: 10.3934/cpaa.2014.13.1435

[11]

David Damanik, Serguei Tcheremchantsev. A general description of quantum dynamical spreading over an orthonormal basis and applications to Schrödinger operators. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1381-1412. doi: 10.3934/dcds.2010.28.1381

[12]

Woocheol Choi, Yong-Cheol Kim. $L^p$ mapping properties for nonlocal Schrödinger operators with certain potentials. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5811-5834. doi: 10.3934/dcds.2018253

[13]

Xumin Wang. Singular Hardy-Trudinger-Moser inequality and the existence of extremals on the unit disc. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2717-2733. doi: 10.3934/cpaa.2019121

[14]

Noboru Okazawa, Tomomi Yokota. Quasi-$m$-accretivity of Schrödinger operators with singular first-order coefficients. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 1081-1090. doi: 10.3934/dcds.2008.22.1081

[15]

Boumediene Abdellaoui, Ahmed Attar. Quasilinear elliptic problem with Hardy potential and singular term. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1363-1380. doi: 10.3934/cpaa.2013.12.1363

[16]

Pradeep Boggarapu, Luz Roncal, Sundaram Thangavelu. On extension problem, trace Hardy and Hardy's inequalities for some fractional Laplacians. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2575-2605. doi: 10.3934/cpaa.2019116

[17]

Wilfried Grecksch, Hannelore Lisei. Linear approximation of nonlinear Schrödinger equations driven by cylindrical Wiener processes. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3095-3114. doi: 10.3934/dcdsb.2016089

[18]

Russell Johnson, Luca Zampogni. Some examples of generalized reflectionless Schrödinger potentials. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1149-1170. doi: 10.3934/dcdss.2016046

[19]

José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138

[20]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (4)

[Back to Top]