# American Institute of Mathematical Sciences

October  2012, 32(10): 3567-3585. doi: 10.3934/dcds.2012.32.3567

## Perturbed elliptic equations with oscillatory nonlinearities

 1 School of Mathematics, Taiyuan University of Technology, Taiyuan 030024, China 2 School of Mathematical Sciences, Capital Normal University, Beijing 100048, China

Received  August 2010 Revised  February 2012 Published  May 2012

In this paper, arbitrarily many solutions, in particular arbitrarily many nodal solutions, are proved to exist for perturbed elliptic equations of the form \begin{equation*}\label{} \left\{ \begin{array}{ll} \displaystyle -\Delta_p u+|u|^{p-2}u = Q(x)(f(u)+\varepsilon g(u)),\ \ \ x\in \mathbb R^N, \\ u\in W^{1,p}(\mathbb R^N), \end{array} \right. (P_\varepsilon) \end{equation*} where $\Delta_p$ is the $p$-Laplacian operator defined by $\Delta_p u=\text{div}(|\nabla u|^{p-2}\nabla u)$, $p>1$, $Q\in \mathcal{C}(\mathbb R^N,\mathbb R)$ is a positive function, $f\in\mathcal{C}(\mathbb R, \mathbb R)$ oscillates either near the origin or near the infinity, and $\epsilon$ is a real number. For $g$ it is only required that $g\in\mathcal{C}(\mathbb R, \mathbb R)$. Under appropriate assumptions on $Q$ and $f$ the following results which are special cases of more general ones are proved: the unperturbed problem $(P_0)$ has infinitely many nodal solutions, and for any $n\in\mathbb N$ the perturbed problem $(P_\varepsilon)$ has at least $n$ nodal solutions provided that $|\epsilon|$ is sufficiently small.
Citation: Zuji Guo, Zhaoli Liu. Perturbed elliptic equations with oscillatory nonlinearities. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3567-3585. doi: 10.3934/dcds.2012.32.3567
##### References:
 [1] G. Anello and G. Cordaro, Perturbation from Dirichlet problem involving oscillating nonlinearities,, J. Differential Equations, 234 (2007), 80. doi: 10.1016/j.jde.2006.11.011. Google Scholar [2] T. Bartsch, K.-C. Chang and Z.-Q. Wang, On the Morse indices of sign changing solutions of nonlinear elliptic problems,, Math. Z., 233 (2000), 655. doi: 10.1007/s002090050492. Google Scholar [3] T. Bartsch and Z. Liu, Location and critical groups of critical points in Banach spaces with an application to nonlinear eigenvalue problems,, Adv. Differential Equations, 9 (2004), 645. Google Scholar [4] T. Bartsch and Z. Liu, Multiple sign changing solutions of a quasilinear elliptic eigenvalue problem involving the $p$-Laplacian,, Commun. Contemp. Math., 6 (2004), 245. Google Scholar [5] T. Bartsch and Z. Liu, On a superlinear elliptic $p$-Laplacian equation,, J. Differential Equations, 198 (2004), 149. doi: 10.1016/j.jde.2003.08.001. Google Scholar [6] T. Bartsch, Z. Liu and T. Weth, Nodal solutions of a $p$-Laplacian equation,, Proc. London Math. Soc. (3), 91 (2005), 129. doi: 10.1112/S0024611504015187. Google Scholar [7] S. Chen and S. Li, Splitting lemma at infinity and a strongly resonant problem with periodic nonlinearity,, Calc. Var. Partial Differential Equations, 27 (2006), 105. doi: 10.1007/s00526-006-0025-1. Google Scholar [8] L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and montonicity results,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 493. doi: 10.1016/S0294-1449(98)80032-2. Google Scholar [9] P. Habets, E. Serra and M. Tarallo, Multiplicity results for boundary value problems with potentials oscillating around resonance,, J. Differential Equations, 138 (1997), 133. doi: 10.1006/jdeq.1997.3267. Google Scholar [10] A. Kristály, Detection of arbitrarily many solutions for perturbed elliptic problems involving oscillatory terms,, J. Differential Equations, 245 (2008), 3849. doi: 10.1016/j.jde.2008.05.014. Google Scholar [11] S. Li and Z. Liu, Perturbations from symmeric elliptic boundary value problems,, J. Differential Equations, 185 (2002), 271. doi: 10.1006/jdeq.2001.4160. Google Scholar [12] Y. Li, Z. Liu and C. Zhao, Nodal solutions of a perturbed elliptic problem,, Topol. Methods Nonlinear Anal., 32 (2008), 49. Google Scholar [13] P. Omari and F. Zanolin, Infinitely many solutions of a quasilinear elliptic problem with an oscillatory potential,, Comm. Partial Differential Equations, 21 (1996), 721. doi: 10.1080/03605309608821205. Google Scholar [14] J. Saint Raymond, On the multiplicity of the solutions of equations $-\Delta u=\lambda f(u)$,, J. Differential Equations, 180 (2002), 65. doi: 10.1006/jdeq.2001.4057. Google Scholar [15] R. Schaaf and K. Schmitt, A class of nonlinear Sturm-Liouville problems with infinitely many solutions,, Trans. Amer. Math. Soc., 306 (1988), 853. doi: 10.1090/S0002-9947-1988-0933322-5. Google Scholar [16] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations,, J. Differential Equations, 51 (1984), 126. doi: 10.1016/0022-0396(84)90105-0. Google Scholar

show all references

##### References:
 [1] G. Anello and G. Cordaro, Perturbation from Dirichlet problem involving oscillating nonlinearities,, J. Differential Equations, 234 (2007), 80. doi: 10.1016/j.jde.2006.11.011. Google Scholar [2] T. Bartsch, K.-C. Chang and Z.-Q. Wang, On the Morse indices of sign changing solutions of nonlinear elliptic problems,, Math. Z., 233 (2000), 655. doi: 10.1007/s002090050492. Google Scholar [3] T. Bartsch and Z. Liu, Location and critical groups of critical points in Banach spaces with an application to nonlinear eigenvalue problems,, Adv. Differential Equations, 9 (2004), 645. Google Scholar [4] T. Bartsch and Z. Liu, Multiple sign changing solutions of a quasilinear elliptic eigenvalue problem involving the $p$-Laplacian,, Commun. Contemp. Math., 6 (2004), 245. Google Scholar [5] T. Bartsch and Z. Liu, On a superlinear elliptic $p$-Laplacian equation,, J. Differential Equations, 198 (2004), 149. doi: 10.1016/j.jde.2003.08.001. Google Scholar [6] T. Bartsch, Z. Liu and T. Weth, Nodal solutions of a $p$-Laplacian equation,, Proc. London Math. Soc. (3), 91 (2005), 129. doi: 10.1112/S0024611504015187. Google Scholar [7] S. Chen and S. Li, Splitting lemma at infinity and a strongly resonant problem with periodic nonlinearity,, Calc. Var. Partial Differential Equations, 27 (2006), 105. doi: 10.1007/s00526-006-0025-1. Google Scholar [8] L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and montonicity results,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 493. doi: 10.1016/S0294-1449(98)80032-2. Google Scholar [9] P. Habets, E. Serra and M. Tarallo, Multiplicity results for boundary value problems with potentials oscillating around resonance,, J. Differential Equations, 138 (1997), 133. doi: 10.1006/jdeq.1997.3267. Google Scholar [10] A. Kristály, Detection of arbitrarily many solutions for perturbed elliptic problems involving oscillatory terms,, J. Differential Equations, 245 (2008), 3849. doi: 10.1016/j.jde.2008.05.014. Google Scholar [11] S. Li and Z. Liu, Perturbations from symmeric elliptic boundary value problems,, J. Differential Equations, 185 (2002), 271. doi: 10.1006/jdeq.2001.4160. Google Scholar [12] Y. Li, Z. Liu and C. Zhao, Nodal solutions of a perturbed elliptic problem,, Topol. Methods Nonlinear Anal., 32 (2008), 49. Google Scholar [13] P. Omari and F. Zanolin, Infinitely many solutions of a quasilinear elliptic problem with an oscillatory potential,, Comm. Partial Differential Equations, 21 (1996), 721. doi: 10.1080/03605309608821205. Google Scholar [14] J. Saint Raymond, On the multiplicity of the solutions of equations $-\Delta u=\lambda f(u)$,, J. Differential Equations, 180 (2002), 65. doi: 10.1006/jdeq.2001.4057. Google Scholar [15] R. Schaaf and K. Schmitt, A class of nonlinear Sturm-Liouville problems with infinitely many solutions,, Trans. Amer. Math. Soc., 306 (1988), 853. doi: 10.1090/S0002-9947-1988-0933322-5. Google Scholar [16] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations,, J. Differential Equations, 51 (1984), 126. doi: 10.1016/0022-0396(84)90105-0. Google Scholar
 [1] Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Positive solutions for p-Laplacian equations with concave terms. Conference Publications, 2011, 2011 (Special) : 922-930. doi: 10.3934/proc.2011.2011.922 [2] Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595 [3] Nikolaos S. Papageorgiou, Vicenţiu D. Rǎdulescu, Dušan D. Repovš. Nodal solutions for the Robin p-Laplacian plus an indefinite potential and a general reaction term. Communications on Pure & Applied Analysis, 2018, 17 (1) : 231-241. doi: 10.3934/cpaa.2018014 [4] Adam Lipowski, Bogdan Przeradzki, Katarzyna Szymańska-Dębowska. Periodic solutions to differential equations with a generalized p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2593-2601. doi: 10.3934/dcdsb.2014.19.2593 [5] Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069 [6] Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040 [7] Liping Wang. Arbitrarily many solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Communications on Pure & Applied Analysis, 2010, 9 (3) : 761-778. doi: 10.3934/cpaa.2010.9.761 [8] Liang Zhang, X. H. Tang, Yi Chen. Infinitely many solutions for a class of perturbed elliptic equations with nonlocal operators. Communications on Pure & Applied Analysis, 2017, 16 (3) : 823-842. doi: 10.3934/cpaa.2017039 [9] Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Dead cores and bursts for p-Laplacian elliptic equations with weights. Conference Publications, 2007, 2007 (Special) : 191-200. doi: 10.3934/proc.2007.2007.191 [10] Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033 [11] Shanming Ji, Yutian Li, Rui Huang, Xuejing Yin. Singular periodic solutions for the p-laplacian ina punctured domain. Communications on Pure & Applied Analysis, 2017, 16 (2) : 373-392. doi: 10.3934/cpaa.2017019 [12] Maya Chhetri, D. D. Hai, R. Shivaji. On positive solutions for classes of p-Laplacian semipositone systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 1063-1071. doi: 10.3934/dcds.2003.9.1063 [13] Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Existence of radial solutions for the $p$-Laplacian elliptic equations with weights. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 447-479. doi: 10.3934/dcds.2006.15.447 [14] Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many radial solutions of a non--homogeneous $p$--Laplacian problem. Conference Publications, 2013, 2013 (special) : 51-59. doi: 10.3934/proc.2013.2013.51 [15] Petru Jebelean. Infinitely many solutions for ordinary $p$-Laplacian systems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2008, 7 (2) : 267-275. doi: 10.3934/cpaa.2008.7.267 [16] Dumitru Motreanu, Viorica V. Motreanu, Abdelkrim Moussaoui. Location of Nodal solutions for quasilinear elliptic equations with gradient dependence. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 293-307. doi: 10.3934/dcdss.2018016 [17] Peter Poláčik. On the multiplicity of nonnegative solutions with a nontrivial nodal set for elliptic equations on symmetric domains. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2657-2667. doi: 10.3934/dcds.2014.34.2657 [18] Xiying Sun, Qihuai Liu, Dingbian Qian, Na Zhao. Infinitely many subharmonic solutions for nonlinear equations with singular $\phi$-Laplacian. Communications on Pure & Applied Analysis, 2020, 19 (1) : 279-292. doi: 10.3934/cpaa.20200015 [19] Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure & Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371 [20] Nikolaos S. Papageorgiou, George Smyrlis. Positive solutions for parametric $p$-Laplacian equations. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1545-1570. doi: 10.3934/cpaa.2016002

2018 Impact Factor: 1.143