August  2012, 32(8): 2971-2995. doi: 10.3934/dcds.2012.32.2971

Stochastic phase dynamics of noise driven synchronization of two conditional coherent oscillators

1. 

Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, British Columbia, V6T 1Z2, Canada, Canada

2. 

Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC, V6T 1Z2

Received  April 2011 Revised  September 2011 Published  March 2012

We consider a pair of uncoupled conditional oscillators near a subcritical Hopf bifurcation that are driven by two weak white noise sources, one intrinsic and one common. In this context the noise drives oscillations in a setting where the underlying deterministic dynamics are quiescent. Synchronization of these noise-driven oscillations is considered, where the noise is also driving synchronization. We first derive the envelope equations of the noise-driven oscillations using a stochastic multiple scales method, providing access to phase and amplitude information. Using both a linearized approximation and an asymptotic analysis of the nonlinear system, we obtain approximations for the probability density of the phase difference of the oscillators. It is found that common noise increases the degree of synchrony in the pair of oscillators, which can be characterized by the ratio of intrinsic to common noise. Asymptotic expressions for the phase difference density provide explicit parametric expressions for the probability of observing different phase dynamics: in-phase synchronization, phase shifted oscillations, and non-synchronized states. Computational results are provided to support analytical conclusions.
Citation: William F. Thompson, Rachel Kuske, Yue-Xian Li. Stochastic phase dynamics of noise driven synchronization of two conditional coherent oscillators. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2971-2995. doi: 10.3934/dcds.2012.32.2971
References:
[1]

L. Arnold and N. Sri Namachchivaya and K. Schenk-Hoppé, Toward an understanding of the stochastic Hopf bifurcation: A case study,, Int. J. Bifur. Chaos Appl. Sci. Engrg., 6 (1996), 1947. doi: 10.1142/S0218127496001272. Google Scholar

[2]

P. H. Baxendale, Stochastic Averaging and asymptotic behavior of the stochastic Duffing-van der Pol equation,, Stoch. Proc. and Appl., 113 (2004), 235. doi: 10.1016/j.spa.2004.05.001. Google Scholar

[3]

P. H. Baxendale and P. E. Greenwood, Sustained oscillations for density dependent Markov processes,, J. Math. Bio., 63 (2011), 433. doi: 10.1007/s00285-010-0376-2. Google Scholar

[4]

R. Brette and E. Guigon, Reliability of spike timing is a general property of spiking model neurons,, Neural Comp., 15 (2003), 279. doi: 10.1162/089976603762552924. Google Scholar

[5]

H. L. Bryant and J. P. Segundo, Spike initiation by transmembrane current: A white-noise analysis,, J. Physiol., 260 (1976), 279. Google Scholar

[6]

T. Caraballo and P. E. Kloeden and A. Neuenkirch, Synchronization of systems with multiplicative noise,, Stoch. Dyn., 8 (2008), 139. doi: 10.1142/S0219493708002184. Google Scholar

[7]

M. G. Earl and S. H. Strogatz, Synchronization in oscillator networks with delayed coupling: A stability criterion,, Phys. Rev E., 67 (2003). doi: 10.1103/PhysRevE.67.036204. Google Scholar

[8]

B. Ermentrout and T.-W. Ko, Delays and weakly coupled neuronal oscillators,, Phil. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 367 (2009), 1097. doi: 10.1098/rsta.2008.0259. Google Scholar

[9]

R. F. Galán, G. B. Ermentrout and N. N. Urban, Optimal time scale for spike-time reliability,, J. Neurophysiol., 99 (2008), 277. Google Scholar

[10]

R. F. Galán, N. Fourcaud-Trocmé, G. B. Ermentrout and N. N. Urban, Correlation-induced synchronization of oscillations in olfactory bulb neurons,, Jour. Neurosci., 26 (2006), 3646. doi: 10.1523/JNEUROSCI.4605-05.2006. Google Scholar

[11]

D. García-Alvarez, A. Bahraminasab, A. Stefanovska and P. V. E. McClintock, Competition between noise and coupling in the induction of synchronisation,, Europhys. Lett., 88 (2009). doi: 10.1209/0295-5075/88/30005. Google Scholar

[12]

C. W. Gardiner, "Handbook of Stochastic Methods. For Physics, Chemistry and the Natural Sciences,'', Springer Series in Synergetics, 13 (1983). Google Scholar

[13]

D. S. Goldobin and A. Pikovsky, Synchronization and desynchronization of self-sustained oscillators by common noise,, Phys. Rev. E (3), 71 (2005). Google Scholar

[14]

D. S. Goldobin, J. Teramae, H. Nakao and G. B. Ermentrout, Dynamics of limit-cycle oscillators subject to general noise,, Phys. Rev. Lett., 105 (2010). doi: 10.1103/PhysRevLett.105.154101. Google Scholar

[15]

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve,, J. Physiol., 117 (1952), 500. Google Scholar

[16]

R. P. Kanwal, "Generalized Functions. Theory and Technique,'', Second edition, (1998). Google Scholar

[17]

J. Kevorkian and J. D. Cole, "Perturbation Methods in Applied Mathematics,'', Applied Mathematical Sciences, 34 (1981). Google Scholar

[18]

P. E. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations,'', Applications of Mathematics (New York), 23 (1992). Google Scholar

[19]

M. M. Klosek and R. Kuske, Multiscale analysis of stochastic delay differential equations,, Mult. Model. Sim., 3 (2005), 706. doi: 10.1137/030601375. Google Scholar

[20]

Y. Kuramoto, "Chemical Oscillations, Waves, and Turbulence,'', Dover, (2003). Google Scholar

[21]

R. Kuske, Multi-scale analysis of noise-sensitivity near a bifurcation,, in, 110 (2003), 147. Google Scholar

[22]

R. Kuske, P. Greenwood and L. Gordillo, Sustained oscillations via coherence resonance in SIR,, J. Theor. Bio., 245 (2007), 459. doi: 10.1016/j.jtbi.2006.10.029. Google Scholar

[23]

B. Lindner, J. Garcia-Ojalvo, A. Neiman and L. Schimansky-Geier, Effects of noise in excitable systems,, Phys. Rep., 392 (2004), 321. doi: 10.1016/j.physrep.2003.10.015. Google Scholar

[24]

C. Ly and G. B. Ermentrout, Synchronization dynamics of two coupled neural oscillators receiving shared and unshared noisy stimuli,, J. Comput. Neurosci., 26 (2009), 425. doi: 10.1007/s10827-008-0120-8. Google Scholar

[25]

Z. F. Mainen and T. J. Sejnowski, Reliability of spike timing in neocortical neurons,, Science, 268 (1995), 1503. Google Scholar

[26]

L. Markus and A. Weerasinghe, Stochastic oscillators,, J. Diff. Eq., 71 (1988), 288. Google Scholar

[27]

L. Markus and A. Weerasinghe, Stochastic non-linear oscillators,, Adv. Appl. Prob., 25 (1993), 649. doi: 10.2307/1427528. Google Scholar

[28]

C. Morris and H. Lecar, Voltage oscillations in the barnacle giant muscle fiber,, Biophys. J., 35 (1981), 193. doi: 10.1016/S0006-3495(81)84782-0. Google Scholar

[29]

K. H. Nagai and H. Kori, Noise-induced synchronization of a large population of globally coupled nonidentical oscillators,, Phys. Rev. E, 81 (2010). doi: 10.1103/PhysRevE.81.065202. Google Scholar

[30]

H. Nakao, K. Arai and Y. Kawamura, Noise-induced synchronization and clustering in ensembles of uncoupled limit-cycle oscillators,, Phys. Rev. Lett., 98 (2007). doi: 10.1103/PhysRevLett.98.184101. Google Scholar

[31]

A. B. Neiman and D. F. Russell, Synchronization of noise-induced bursts in noncoupled sensory neurons,, Phys. Rev. Lett., 88 (2002). Google Scholar

[32]

J. C. Neu, Coupled chemical oscillators,, SIAM J. Appl. Math., 37 (1979), 307. doi: 10.1137/0137022. Google Scholar

[33]

A. Pikovsky, M. Rosenblum and J. Kurths, "Synchronization: A Universal Concept in Nonlinear Sciences,'', Cambridge Nonlinear Science Series, 12 (2001). Google Scholar

[34]

A. S. Pikovsky and J. Kurths, Coherence resonance in a noise-driven excitable system,, Phys. Rev. Lett., 78 (1997), 775. doi: 10.1103/PhysRevLett.78.775. Google Scholar

[35]

J. Rinzel and G. B. Ermentrout, Analysis of neural excitability and oscillations,, in, (1989), 135. Google Scholar

[36]

J. Teramae, H. Nakao and G. B. Ermentrout, Stochastic phase reduction for a general class of noisy limit cycle oscillators,, Phys. Rev. Lett., 102 (2009). doi: 10.1103/PhysRevLett.102.194102. Google Scholar

[37]

J. Teramae and D. Tanaka, Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators,, Phys. Rev. Lett., 93 (2004). doi: 10.1103/PhysRevLett.93.204103. Google Scholar

[38]

K. Yoshimura and K. Arai, Phase reduction of stochastic limit cycle oscillators,, Phys. Rev. Lett., 101 (2008). doi: 10.1103/PhysRevLett.101.154101. Google Scholar

[39]

N. Yu, R. Kuske and Y.-X. Li, Stochastic phase dynamics: Multiscale behavior and coherence measures,, Phys. Rev. E, 73 (2006). doi: 10.1103/PhysRevE.73.056205. Google Scholar

[40]

N. Yu, R. Kuske and Y.-X. Li, A computational study of spike time reliability in two cases of threshold dynamics,, preprint., (). Google Scholar

show all references

References:
[1]

L. Arnold and N. Sri Namachchivaya and K. Schenk-Hoppé, Toward an understanding of the stochastic Hopf bifurcation: A case study,, Int. J. Bifur. Chaos Appl. Sci. Engrg., 6 (1996), 1947. doi: 10.1142/S0218127496001272. Google Scholar

[2]

P. H. Baxendale, Stochastic Averaging and asymptotic behavior of the stochastic Duffing-van der Pol equation,, Stoch. Proc. and Appl., 113 (2004), 235. doi: 10.1016/j.spa.2004.05.001. Google Scholar

[3]

P. H. Baxendale and P. E. Greenwood, Sustained oscillations for density dependent Markov processes,, J. Math. Bio., 63 (2011), 433. doi: 10.1007/s00285-010-0376-2. Google Scholar

[4]

R. Brette and E. Guigon, Reliability of spike timing is a general property of spiking model neurons,, Neural Comp., 15 (2003), 279. doi: 10.1162/089976603762552924. Google Scholar

[5]

H. L. Bryant and J. P. Segundo, Spike initiation by transmembrane current: A white-noise analysis,, J. Physiol., 260 (1976), 279. Google Scholar

[6]

T. Caraballo and P. E. Kloeden and A. Neuenkirch, Synchronization of systems with multiplicative noise,, Stoch. Dyn., 8 (2008), 139. doi: 10.1142/S0219493708002184. Google Scholar

[7]

M. G. Earl and S. H. Strogatz, Synchronization in oscillator networks with delayed coupling: A stability criterion,, Phys. Rev E., 67 (2003). doi: 10.1103/PhysRevE.67.036204. Google Scholar

[8]

B. Ermentrout and T.-W. Ko, Delays and weakly coupled neuronal oscillators,, Phil. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 367 (2009), 1097. doi: 10.1098/rsta.2008.0259. Google Scholar

[9]

R. F. Galán, G. B. Ermentrout and N. N. Urban, Optimal time scale for spike-time reliability,, J. Neurophysiol., 99 (2008), 277. Google Scholar

[10]

R. F. Galán, N. Fourcaud-Trocmé, G. B. Ermentrout and N. N. Urban, Correlation-induced synchronization of oscillations in olfactory bulb neurons,, Jour. Neurosci., 26 (2006), 3646. doi: 10.1523/JNEUROSCI.4605-05.2006. Google Scholar

[11]

D. García-Alvarez, A. Bahraminasab, A. Stefanovska and P. V. E. McClintock, Competition between noise and coupling in the induction of synchronisation,, Europhys. Lett., 88 (2009). doi: 10.1209/0295-5075/88/30005. Google Scholar

[12]

C. W. Gardiner, "Handbook of Stochastic Methods. For Physics, Chemistry and the Natural Sciences,'', Springer Series in Synergetics, 13 (1983). Google Scholar

[13]

D. S. Goldobin and A. Pikovsky, Synchronization and desynchronization of self-sustained oscillators by common noise,, Phys. Rev. E (3), 71 (2005). Google Scholar

[14]

D. S. Goldobin, J. Teramae, H. Nakao and G. B. Ermentrout, Dynamics of limit-cycle oscillators subject to general noise,, Phys. Rev. Lett., 105 (2010). doi: 10.1103/PhysRevLett.105.154101. Google Scholar

[15]

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve,, J. Physiol., 117 (1952), 500. Google Scholar

[16]

R. P. Kanwal, "Generalized Functions. Theory and Technique,'', Second edition, (1998). Google Scholar

[17]

J. Kevorkian and J. D. Cole, "Perturbation Methods in Applied Mathematics,'', Applied Mathematical Sciences, 34 (1981). Google Scholar

[18]

P. E. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations,'', Applications of Mathematics (New York), 23 (1992). Google Scholar

[19]

M. M. Klosek and R. Kuske, Multiscale analysis of stochastic delay differential equations,, Mult. Model. Sim., 3 (2005), 706. doi: 10.1137/030601375. Google Scholar

[20]

Y. Kuramoto, "Chemical Oscillations, Waves, and Turbulence,'', Dover, (2003). Google Scholar

[21]

R. Kuske, Multi-scale analysis of noise-sensitivity near a bifurcation,, in, 110 (2003), 147. Google Scholar

[22]

R. Kuske, P. Greenwood and L. Gordillo, Sustained oscillations via coherence resonance in SIR,, J. Theor. Bio., 245 (2007), 459. doi: 10.1016/j.jtbi.2006.10.029. Google Scholar

[23]

B. Lindner, J. Garcia-Ojalvo, A. Neiman and L. Schimansky-Geier, Effects of noise in excitable systems,, Phys. Rep., 392 (2004), 321. doi: 10.1016/j.physrep.2003.10.015. Google Scholar

[24]

C. Ly and G. B. Ermentrout, Synchronization dynamics of two coupled neural oscillators receiving shared and unshared noisy stimuli,, J. Comput. Neurosci., 26 (2009), 425. doi: 10.1007/s10827-008-0120-8. Google Scholar

[25]

Z. F. Mainen and T. J. Sejnowski, Reliability of spike timing in neocortical neurons,, Science, 268 (1995), 1503. Google Scholar

[26]

L. Markus and A. Weerasinghe, Stochastic oscillators,, J. Diff. Eq., 71 (1988), 288. Google Scholar

[27]

L. Markus and A. Weerasinghe, Stochastic non-linear oscillators,, Adv. Appl. Prob., 25 (1993), 649. doi: 10.2307/1427528. Google Scholar

[28]

C. Morris and H. Lecar, Voltage oscillations in the barnacle giant muscle fiber,, Biophys. J., 35 (1981), 193. doi: 10.1016/S0006-3495(81)84782-0. Google Scholar

[29]

K. H. Nagai and H. Kori, Noise-induced synchronization of a large population of globally coupled nonidentical oscillators,, Phys. Rev. E, 81 (2010). doi: 10.1103/PhysRevE.81.065202. Google Scholar

[30]

H. Nakao, K. Arai and Y. Kawamura, Noise-induced synchronization and clustering in ensembles of uncoupled limit-cycle oscillators,, Phys. Rev. Lett., 98 (2007). doi: 10.1103/PhysRevLett.98.184101. Google Scholar

[31]

A. B. Neiman and D. F. Russell, Synchronization of noise-induced bursts in noncoupled sensory neurons,, Phys. Rev. Lett., 88 (2002). Google Scholar

[32]

J. C. Neu, Coupled chemical oscillators,, SIAM J. Appl. Math., 37 (1979), 307. doi: 10.1137/0137022. Google Scholar

[33]

A. Pikovsky, M. Rosenblum and J. Kurths, "Synchronization: A Universal Concept in Nonlinear Sciences,'', Cambridge Nonlinear Science Series, 12 (2001). Google Scholar

[34]

A. S. Pikovsky and J. Kurths, Coherence resonance in a noise-driven excitable system,, Phys. Rev. Lett., 78 (1997), 775. doi: 10.1103/PhysRevLett.78.775. Google Scholar

[35]

J. Rinzel and G. B. Ermentrout, Analysis of neural excitability and oscillations,, in, (1989), 135. Google Scholar

[36]

J. Teramae, H. Nakao and G. B. Ermentrout, Stochastic phase reduction for a general class of noisy limit cycle oscillators,, Phys. Rev. Lett., 102 (2009). doi: 10.1103/PhysRevLett.102.194102. Google Scholar

[37]

J. Teramae and D. Tanaka, Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators,, Phys. Rev. Lett., 93 (2004). doi: 10.1103/PhysRevLett.93.204103. Google Scholar

[38]

K. Yoshimura and K. Arai, Phase reduction of stochastic limit cycle oscillators,, Phys. Rev. Lett., 101 (2008). doi: 10.1103/PhysRevLett.101.154101. Google Scholar

[39]

N. Yu, R. Kuske and Y.-X. Li, Stochastic phase dynamics: Multiscale behavior and coherence measures,, Phys. Rev. E, 73 (2006). doi: 10.1103/PhysRevE.73.056205. Google Scholar

[40]

N. Yu, R. Kuske and Y.-X. Li, A computational study of spike time reliability in two cases of threshold dynamics,, preprint., (). Google Scholar

[1]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[2]

Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic & Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485

[3]

Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic & Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016

[4]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[5]

Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056

[6]

Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008

[7]

Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks & Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028

[8]

Giuseppe Toscani. A Rosenau-type approach to the approximation of the linear Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (4) : 697-714. doi: 10.3934/krm.2018028

[9]

Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250

[10]

Shui-Nee Chow, Wuchen Li, Haomin Zhou. Entropy dissipation of Fokker-Planck equations on graphs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4929-4950. doi: 10.3934/dcds.2018215

[11]

Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic & Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165

[12]

Ludovic Dan Lemle. $L^1(R^d,dx)$-uniqueness of weak solutions for the Fokker-Planck equation associated with a class of Dirichlet operators. Electronic Research Announcements, 2008, 15: 65-70. doi: 10.3934/era.2008.15.65

[13]

Joseph G. Conlon, André Schlichting. A non-local problem for the Fokker-Planck equation related to the Becker-Döring model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1821-1889. doi: 10.3934/dcds.2019079

[14]

Simon Plazotta. A BDF2-approach for the non-linear Fokker-Planck equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2893-2913. doi: 10.3934/dcds.2019120

[15]

Patrick Cattiaux, Elissar Nasreddine, Marjolaine Puel. Diffusion limit for kinetic Fokker-Planck equation with heavy tails equilibria: The critical case. Kinetic & Related Models, 2019, 12 (4) : 727-748. doi: 10.3934/krm.2019028

[16]

Florian Schneider, Andreas Roth, Jochen Kall. First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinetic & Related Models, 2017, 10 (4) : 1127-1161. doi: 10.3934/krm.2017044

[17]

Roberta Bosi. Classical limit for linear and nonlinear quantum Fokker-Planck systems. Communications on Pure & Applied Analysis, 2009, 8 (3) : 845-870. doi: 10.3934/cpaa.2009.8.845

[18]

John W. Barrett, Endre Süli. Existence of global weak solutions to Fokker-Planck and Navier-Stokes-Fokker-Planck equations in kinetic models of dilute polymers. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 371-408. doi: 10.3934/dcdss.2010.3.371

[19]

Kim-Ngan Le, William McLean, Martin Stynes. Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2765-2787. doi: 10.3934/cpaa.2019124

[20]

Linghua Chen, Espen R. Jakobsen. L1 semigroup generation for Fokker-Planck operators associated to general Lévy driven SDEs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5735-5763. doi: 10.3934/dcds.2018250

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]