June  2012, 32(6): 2125-2146. doi: 10.3934/dcds.2012.32.2125

Generalized Stokes system in Orlicz spaces

1. 

Institute of Applied Mathematics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland, Poland, Poland

Received  January 2011 Revised  September 2011 Published  February 2012

The paper concerns the generalized Stokes system with the nonlinear term having growth conditions prescribed by an ${\mathcal{N}}-$function. Our main interest is directed to relaxing the assumptions on the ${\mathcal{N}}-$function and in particular to capture the shear thinning fluids with rheology close to linear. The case of anisotropic functions is considered. The existence of weak solutions is the main result of the present paper. Additionally, for the purpose of the existence proof, a version of the Sobolev-Korn inequality in Orlicz spaces is proved.
Citation: Piotr Gwiazda, Agnieszka Świerczewska-Gwiazda, Aneta Wróblewska. Generalized Stokes system in Orlicz spaces. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2125-2146. doi: 10.3934/dcds.2012.32.2125
References:
[1]

H. Amann and J. Escher, "Analysis. II,", Grundstudium Mathematik, (1999). doi: 10.1007/978-3-0348-8972-8. Google Scholar

[2]

O. N. Cavatorta and R. D. Tonini, Dimensionless velocity profiles and parameter maps for non-Newtonian fluids,, International Communications in Heat and Mass Transfer, 14 (1987), 359. doi: 10.1016/0735-1933(87)90057-1. Google Scholar

[3]

A. Cianchi, A fully anisotropic Sobolev inequality,, Pacific J. Math., 196 (2000), 283. doi: 10.2140/pjm.2000.196.283. Google Scholar

[4]

A. Cianchi, Optimal Orlicz-Sobolev embeddings,, Rev. Mat. Iberoam., 20 (2004), 427. doi: 10.4171/RMI/396. Google Scholar

[5]

L. Diening, M. Růžička and K. Schumacher, A decomposition technique for John domains,, Ann. Acad. Sci. Fenn. Math., 35 (2010), 87. doi: 10.5186/aasfm.2010.3506. Google Scholar

[6]

H. J. Eyring, Viscosity, plasticity, and diffusion as examples of absolute reaction rates,, J. Chemical Physics, 4 (1936), 283. doi: 10.1063/1.1749836. Google Scholar

[7]

M. Fuchs, Korn inequalities in Orlicz spaces,, Irish Math. Soc. Bulletin, 65 (2010), 5. Google Scholar

[8]

M. Fuchs and M. Bildhauer, Compact embeddings of the space of functions with bounded logarithmic deformation,, preprint Nr. 276, (2010). Google Scholar

[9]

M. Fuchs and G. Seregin, Variational methods for fluids of Prandtl-Eyring type and plastic materials with logarithmic hardening,, Math. Methods Appl. Sci., 22 (1999), 317. doi: 10.1002/(SICI)1099-1476(19990310)22:4<317::AID-MMA43>3.0.CO;2-A. Google Scholar

[10]

M. Fuchs and G. Seregin, Variational methods for problems from plasticity theory and for generalized Newtonian fluids,, Ann. Univ. Sarav. Ser. Math., 10 (1999). Google Scholar

[11]

P. Gwiazda and A. Świerczewska-Gwiazda, On non-Newtonian fluids with a property of rapid thickening under different stimulus,, Math. Models Methods Appl. Sci., 18 (2008), 1073. Google Scholar

[12]

P. Gwiazda and A. Świerczewska Gwiazda, Parabolic equations in anisotropic orlicz spaces with general $N$-functions,, Parabolic Problems, 60 (2011), 301. Google Scholar

[13]

P. Gwiazda, A. Świerczewska-Gwiazda and A. Wróblewska, Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids,, Math. Methods Appl. Sci., 33 (2010), 125. Google Scholar

[14]

J. Hron, C. Le Roux, J. Málek and K. Rajagopal, Flows of incompressible fluids subject to Navier's slip on the boundary,, Comput. Math. Appl., 56 (2008), 2128. doi: 10.1016/j.camwa.2008.03.058. Google Scholar

[15]

K. Hutter, "Theoretical Glaciology: Material Science of Ice and the Mechanics of Glaciers and Ice Sheets,", Mathematical Approaches to Geophysics, (1983). Google Scholar

[16]

A. Novotný and I. Straškraba, "Introduction to the Mathematical Theory of Compressible Flow,", Oxford Lecture Series in Mathematics and its Applications, 27 (2004). Google Scholar

[17]

M. Patel and M. G. Timol, Numerical treatment of Powell-Eyring fluid flow using method of satisfaction of asymptotic boundary conditions (MSABC),, Appl. Numer. Math., 59 (2009), 2584. doi: 10.1016/j.apnum.2009.04.010. Google Scholar

[18]

W. Pompe, "Existence Theorems in the Viscoplasticity Theory (Diss.),", Ph.D thesis, (2003). Google Scholar

[19]

R. E. Powell and H. Eyring, Mechanisms for the relaxation theory of viscosity,, Nature, 154 (1994), 427. doi: 10.1038/154427a0. Google Scholar

[20]

A. M. Robertson, Review of relevant continuum mechanics,, in, 37 (2008), 1. Google Scholar

[21]

A. M. Robertson, A. Sequeira and M. V. Kameneva, Hemorheology,, in, 37 (2008), 63. Google Scholar

[22]

R. T. Rockafellar, "Convex Analysis,", Princeton Mathematical Series, (1970). Google Scholar

[23]

V. Sirohi, M. G. Timol and N. L. Kalthia, Powell-Eyring model flow near an accelerated plate,, Fluid Dynamics Research, 2 (1987), 193. doi: 10.1016/0169-5983(87)90029-3. Google Scholar

[24]

M. S. Skaff, Vector valued Orlicz spaces. II,, Pacific J. Math., 28 (1969), 413. Google Scholar

[25]

M. J. Strauss, Variations of Korn's and Sobolev's inequalities,, in, (1973), 207. Google Scholar

[26]

R. Temam and G. Strang, Functions of bounded deformation,, Arch. Rational Mech. Anal., 75 (): 7. doi: 10.1007/BF00284617. Google Scholar

[27]

R. Vodák, The problem $\nabla\cdot$ v$=f$ and singular integrals on Orlicz spaces,, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., 41 (2002), 161. Google Scholar

[28]

A. Wróblewska, Steady flow of non-Newtonian fluids-monotonicity methods in generalized Orlicz spaces,, Nonlinear Anal., 72 (2010), 4136. doi: 10.1016/j.na.2010.01.045. Google Scholar

[29]

H. Yoon and A. Ghajar, A note on the Powell-Eyring fluid model,, International Communications in Heat and Mass Transfer, 14 (1987), 381. doi: 10.1016/0735-1933(87)90059-5. Google Scholar

show all references

References:
[1]

H. Amann and J. Escher, "Analysis. II,", Grundstudium Mathematik, (1999). doi: 10.1007/978-3-0348-8972-8. Google Scholar

[2]

O. N. Cavatorta and R. D. Tonini, Dimensionless velocity profiles and parameter maps for non-Newtonian fluids,, International Communications in Heat and Mass Transfer, 14 (1987), 359. doi: 10.1016/0735-1933(87)90057-1. Google Scholar

[3]

A. Cianchi, A fully anisotropic Sobolev inequality,, Pacific J. Math., 196 (2000), 283. doi: 10.2140/pjm.2000.196.283. Google Scholar

[4]

A. Cianchi, Optimal Orlicz-Sobolev embeddings,, Rev. Mat. Iberoam., 20 (2004), 427. doi: 10.4171/RMI/396. Google Scholar

[5]

L. Diening, M. Růžička and K. Schumacher, A decomposition technique for John domains,, Ann. Acad. Sci. Fenn. Math., 35 (2010), 87. doi: 10.5186/aasfm.2010.3506. Google Scholar

[6]

H. J. Eyring, Viscosity, plasticity, and diffusion as examples of absolute reaction rates,, J. Chemical Physics, 4 (1936), 283. doi: 10.1063/1.1749836. Google Scholar

[7]

M. Fuchs, Korn inequalities in Orlicz spaces,, Irish Math. Soc. Bulletin, 65 (2010), 5. Google Scholar

[8]

M. Fuchs and M. Bildhauer, Compact embeddings of the space of functions with bounded logarithmic deformation,, preprint Nr. 276, (2010). Google Scholar

[9]

M. Fuchs and G. Seregin, Variational methods for fluids of Prandtl-Eyring type and plastic materials with logarithmic hardening,, Math. Methods Appl. Sci., 22 (1999), 317. doi: 10.1002/(SICI)1099-1476(19990310)22:4<317::AID-MMA43>3.0.CO;2-A. Google Scholar

[10]

M. Fuchs and G. Seregin, Variational methods for problems from plasticity theory and for generalized Newtonian fluids,, Ann. Univ. Sarav. Ser. Math., 10 (1999). Google Scholar

[11]

P. Gwiazda and A. Świerczewska-Gwiazda, On non-Newtonian fluids with a property of rapid thickening under different stimulus,, Math. Models Methods Appl. Sci., 18 (2008), 1073. Google Scholar

[12]

P. Gwiazda and A. Świerczewska Gwiazda, Parabolic equations in anisotropic orlicz spaces with general $N$-functions,, Parabolic Problems, 60 (2011), 301. Google Scholar

[13]

P. Gwiazda, A. Świerczewska-Gwiazda and A. Wróblewska, Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids,, Math. Methods Appl. Sci., 33 (2010), 125. Google Scholar

[14]

J. Hron, C. Le Roux, J. Málek and K. Rajagopal, Flows of incompressible fluids subject to Navier's slip on the boundary,, Comput. Math. Appl., 56 (2008), 2128. doi: 10.1016/j.camwa.2008.03.058. Google Scholar

[15]

K. Hutter, "Theoretical Glaciology: Material Science of Ice and the Mechanics of Glaciers and Ice Sheets,", Mathematical Approaches to Geophysics, (1983). Google Scholar

[16]

A. Novotný and I. Straškraba, "Introduction to the Mathematical Theory of Compressible Flow,", Oxford Lecture Series in Mathematics and its Applications, 27 (2004). Google Scholar

[17]

M. Patel and M. G. Timol, Numerical treatment of Powell-Eyring fluid flow using method of satisfaction of asymptotic boundary conditions (MSABC),, Appl. Numer. Math., 59 (2009), 2584. doi: 10.1016/j.apnum.2009.04.010. Google Scholar

[18]

W. Pompe, "Existence Theorems in the Viscoplasticity Theory (Diss.),", Ph.D thesis, (2003). Google Scholar

[19]

R. E. Powell and H. Eyring, Mechanisms for the relaxation theory of viscosity,, Nature, 154 (1994), 427. doi: 10.1038/154427a0. Google Scholar

[20]

A. M. Robertson, Review of relevant continuum mechanics,, in, 37 (2008), 1. Google Scholar

[21]

A. M. Robertson, A. Sequeira and M. V. Kameneva, Hemorheology,, in, 37 (2008), 63. Google Scholar

[22]

R. T. Rockafellar, "Convex Analysis,", Princeton Mathematical Series, (1970). Google Scholar

[23]

V. Sirohi, M. G. Timol and N. L. Kalthia, Powell-Eyring model flow near an accelerated plate,, Fluid Dynamics Research, 2 (1987), 193. doi: 10.1016/0169-5983(87)90029-3. Google Scholar

[24]

M. S. Skaff, Vector valued Orlicz spaces. II,, Pacific J. Math., 28 (1969), 413. Google Scholar

[25]

M. J. Strauss, Variations of Korn's and Sobolev's inequalities,, in, (1973), 207. Google Scholar

[26]

R. Temam and G. Strang, Functions of bounded deformation,, Arch. Rational Mech. Anal., 75 (): 7. doi: 10.1007/BF00284617. Google Scholar

[27]

R. Vodák, The problem $\nabla\cdot$ v$=f$ and singular integrals on Orlicz spaces,, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., 41 (2002), 161. Google Scholar

[28]

A. Wróblewska, Steady flow of non-Newtonian fluids-monotonicity methods in generalized Orlicz spaces,, Nonlinear Anal., 72 (2010), 4136. doi: 10.1016/j.na.2010.01.045. Google Scholar

[29]

H. Yoon and A. Ghajar, A note on the Powell-Eyring fluid model,, International Communications in Heat and Mass Transfer, 14 (1987), 381. doi: 10.1016/0735-1933(87)90059-5. Google Scholar

[1]

Vy Khoi Le. On the existence of nontrivial solutions of inequalities in Orlicz-Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 809-818. doi: 10.3934/dcdss.2012.5.809

[2]

Lucas C. F. Ferreira, Elder J. Villamizar-Roa. On the existence of solutions for the Navier-Stokes system in a sum of weak-$L^{p}$ spaces. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 171-183. doi: 10.3934/dcds.2010.27.171

[3]

Jongkeun Choi, Hongjie Dong, Doyoon Kim. Conormal derivative problems for stationary Stokes system in Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2349-2374. doi: 10.3934/dcds.2018097

[4]

Duchao Liu, Beibei Wang, Peihao Zhao. On the trace regularity results of Musielak-Orlicz-Sobolev spaces in a bounded domain. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1643-1659. doi: 10.3934/cpaa.2016018

[5]

Joachim Naumann, Jörg Wolf. On Prandtl's turbulence model: Existence of weak solutions to the equations of stationary turbulent pipe-flow. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1371-1390. doi: 10.3934/dcdss.2013.6.1371

[6]

Ruirui Sun, Jinxia Li, Baode Li. Molecular characterization of anisotropic weak Musielak-Orlicz Hardy spaces and their applications. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2377-2395. doi: 10.3934/cpaa.2019107

[7]

Aneta Wróblewska-Kamińska. Unsteady flows of non-Newtonian fluids in generalized Orlicz spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2565-2592. doi: 10.3934/dcds.2013.33.2565

[8]

James Scott, Tadele Mengesha. A fractional Korn-type inequality. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3315-3343. doi: 10.3934/dcds.2019137

[9]

Vladimir V. Chepyzhov, E. S. Titi, Mark I. Vishik. On the convergence of solutions of the Leray-$\alpha $ model to the trajectory attractor of the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 481-500. doi: 10.3934/dcds.2007.17.481

[10]

Zhuchun Li, Yi Liu, Xiaoping Xue. Convergence and stability of generalized gradient systems by Łojasiewicz inequality with application in continuum Kuramoto model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 345-367. doi: 10.3934/dcds.2019014

[11]

Lukáš Poul. Existence of weak solutions to the Navier-Stokes-Fourier system on Lipschitz domains. Conference Publications, 2007, 2007 (Special) : 834-843. doi: 10.3934/proc.2007.2007.834

[12]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[13]

Luiz Gustavo Farah. Local solutions in Sobolev spaces and unconditional well-posedness for the generalized Boussinesq equation. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1521-1539. doi: 10.3934/cpaa.2009.8.1521

[14]

Wenyan Zhang, Shu Xu, Shengji Li, Xuexiang Huang. Generalized weak sharp minima of variational inequality problems with functional constraints. Journal of Industrial & Management Optimization, 2013, 9 (3) : 621-630. doi: 10.3934/jimo.2013.9.621

[15]

Ren-You Zhong, Nan-Jing Huang. Strict feasibility for generalized mixed variational inequality in reflexive Banach spaces. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 261-274. doi: 10.3934/naco.2011.1.261

[16]

Ouayl Chadli, Gayatri Pany, Ram N. Mohapatra. Existence and iterative approximation method for solving mixed equilibrium problem under generalized monotonicity in Banach spaces. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019034

[17]

Cheng-Jie Liu, Ya-Guang Wang, Tong Yang. Global existence of weak solutions to the three-dimensional Prandtl equations with a special structure. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2011-2029. doi: 10.3934/dcdss.2016082

[18]

Reinhard Farwig, Paul Felix Riechwald. Regularity criteria for weak solutions of the Navier-Stokes system in general unbounded domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 157-172. doi: 10.3934/dcdss.2016.9.157

[19]

Qingshan Zhang, Yuxiang Li. Convergence rates of solutions for a two-dimensional chemotaxis-Navier-Stokes system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2751-2759. doi: 10.3934/dcdsb.2015.20.2751

[20]

Chao Ji. Ground state solutions of fractional Schrödinger equations with potentials and weak monotonicity condition on the nonlinear term. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6071-6089. doi: 10.3934/dcdsb.2019131

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (6)

[Back to Top]